

Phong
Giới thiệu về bản thân



































\(\dfrac{15,6\times250-26\times78:0,5}{15,6\times3,2\times2,4\times2,6}\)
\(=\dfrac{15,6\times250-26\times78\times2}{15,6\times3,2\times2,4\times2,6}\)
\(=\dfrac{3900-4056}{311,5008}\)
\(=\dfrac{-156}{311,5008}\)
\(\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{2}{3}\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{2}{5}+\dfrac{2}{3}\right)\)
\(=\dfrac{3}{3}+\dfrac{16}{15}\)
\(=1+\dfrac{16}{15}\)
\(=\dfrac{15}{15}+\dfrac{16}{15}\)
\(=\dfrac{31}{15}\)
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
\(1+2+2^2+2^3+...+2^n=357680\)
\(\Leftrightarrow2\cdot\left(1+2+2^2+...+2^n\right)=2\cdot357680\)
\(\Leftrightarrow2+2^2+2^3+2^4+...+2^{n+1}=2\cdot357680\)
\(\Leftrightarrow\left(2+2^2+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)=2\cdot357680-357680\)
\(\Leftrightarrow\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^n-2^n\right)+\left(2^{n+1}-1\right)=357680\)
\(\Leftrightarrow2^{n+1}-1=357680\)
\(\Leftrightarrow2^{n+1}=357681\)
Xem lại đề
a) Nữa chi vi hình chữ nhật:
\(50:2=25\left(m\right)\)
Ta có: \(1,5=\dfrac{3}{2}\)
Tổng số phần bằng nhau:
\(3+2=5\) (phần)
Chiều rộng:
\(25:5\times2=10\left(m\right)\)
Chiều dài:
\(25-10=15\left(m\right)\)
b) Diện tích mảnh vườn:
\(15\times10=150\left(m^2\right)\)
\(\dfrac{6}{5}\cdot\sqrt{\dfrac{25}{16}}-\left(\dfrac{3}{4}\right)^2:0,25\)
\(=\dfrac{6}{5}\cdot\dfrac{5}{4}-\dfrac{9}{16}:\dfrac{1}{4}\)
\(=\dfrac{6\cdot5}{5\cdot4}-\dfrac{9\cdot4}{16}\)
\(=\dfrac{6}{4}-\dfrac{9}{4}\)
\(=\dfrac{3}{4}\)
Ta có x < 19,54 < y
\(\Rightarrow x=19,y=20\)
\(3^2-5^3:5^2+12:2^2\)
\(=9-5^{3-2}+2^2\cdot3:2^2\)
\(=9-5+3\)
\(=7\)
a) \(A=\left\{7;8;9;10;11;12;...;59\right\}\)
b) Số lượng phần tử:
\(\left(59-7\right):1+1=53\) (phần tử)
\(2^3+\left(x-3^2\right)=5^3-4^3\)
\(\Rightarrow8+x-9=125-64\)
\(\Rightarrow x-1=61\)
\(\Rightarrow x=61+1\)
\(\Rightarrow x=62\)