

Phong
Giới thiệu về bản thân



































\(\left(4x-1\right)^2-4\left(2x+1\right)^2-x-4=0\)
\(\Leftrightarrow\left(16x^2-8x+1\right)-4\left(4x^2+4x+1\right)-x-4=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-16x-4-x-4=0\)
\(\Leftrightarrow25x-7=0\)
\(\Leftrightarrow25x=7\)
\(\Leftrightarrow x=\dfrac{7}{25}\)
Ta có:
\(\dfrac{1}{2}=0,5\)
\(\dfrac{2}{3}=0,666...\)
\(\dfrac{3}{4}=0,75\)
\(\dfrac{5}{4}=1,25\)
Sắp xếp theo thứ tự từ lớn đến bé là:
\(\dfrac{5}{4};\dfrac{3}{4};\dfrac{2}{3};\dfrac{1}{2}\)
\(C=4x^2+y^2-4x+8y+12\)
\(C=4x^2-4x+1+y^2+8y+16-5\)
\(C=\left(4x^2-4x+1\right)+\left(y^2+8y+16\right)-5\)
\(C=\left(2x-1\right)^2+\left(y+4\right)^2-5\)
Mà: \(\left\{{}\begin{matrix}\left(2x-1\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall x\end{matrix}\right.\)
Nên: \(C=\left(2x-1\right)^2+\left(y+4\right)^2-5\ge-5\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x-1=0\\y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-4\end{matrix}\right.\)
Vậy: \(C_{min}=-5\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-4\end{matrix}\right.\)
1% x 100000 = 1000 đồng
Chọn D
Ta có:
\(45=3^2\cdot5\)
\(36=2^2\cdot3^2\)
\(\Rightarrow BCNN\left(45,36\right)=3^2\cdot2^2\cdot5=180\)
\(\dfrac{99}{98}-\dfrac{98}{97}+\dfrac{1}{97\cdot98}\)
\(=\dfrac{99\cdot97}{98\cdot97}-\dfrac{98\cdot98}{97\cdot98}+\dfrac{1}{97\cdot98}\)
\(=\dfrac{99\cdot97-98^2+1}{98\cdot97}\)
\(=\dfrac{\left(98+1\right)\left(98-1\right)-98^2+1}{98\cdot97}\)
\(=\dfrac{98^2-1-98^2+1}{98\cdot97}\)
\(=\dfrac{0}{97\cdot98}\)
\(=0\)
x - 15 = ( - 7) - 30
x - 15 = - 37
x = - 37 + 15
x = - 22
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3