

Phong
Giới thiệu về bản thân



































\(25^{2x}:5^x=125^2\)
\(\Rightarrow5^{4x}:5^x=\left(5^3\right)^2\)
\(\Rightarrow5^{4x-x}=5^6\)
\(\Rightarrow5^{3x}=5^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(1-2+3-4+5-6+...+2019-2020+2021\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2019-2020\right)+2021\)
\(=-1-1-1-..-1+2021\)
\(=-1\cdot1010+2021\)
\(=-1010+2021\)
\(=-1011\)
\(1000=2^3\cdot5^3\)
\(7200=2^5\cdot3^2\cdot5^2\)
\(810=2\cdot3^4\cdot5\)
\(8000=2^6\cdot5^3\)
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
2n + 19 chia hết cho 2n + 5
⇒ 2n + 5 + 14 chia hết cho 2n + 5
⇒ 14 chia hết cho 2n + 5
⇒ 2n + 5 ϵ Ư(14)
Mà n nguyên nên 2n + 5 ϵ { 1 ; -1 ; 7; -7)
Ta có bảng sau:
2n + 5 | 1 | -1 | 7 | -7 |
n | -2 | -3 | 1 | -6 |
Vậy: n ϵ {-2 ; -3; 1; -6}
\(\left(2^3\cdot9^4+9^3\cdot45\right):\left(9^2\cdot10-9^2\right)\)
\(=\left(2^3\cdot3^8+3^6\cdot5\cdot3^2\right):\left[9^2\cdot\left(10-1\right)\right]\)
\(=\left(2^3\cdot3^8+3^8\cdot5\right):\left(9^2\cdot9\right)\)
\(=\left[3^8\cdot\left(2^3+5\right)\right]:9^3\)
\(=3^8\cdot13:3^6\)
\(=3^2\cdot13\)
\(=117\)
\(14-x+\left(-10\right)=-\left(-9\right)+\left(+15\right)\)
\(\Rightarrow14-x-10=9+15\)
\(\Rightarrow4-x=24\)
\(\Rightarrow x=4-24\)
\(\Rightarrow x=-20\)
\(100:\left\{250:\left[450-\left(4\cdot5^3-2^2\cdot25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4\cdot125-4\cdot25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
\(a^2+16\cdot a\)
\(=a\cdot\left(a-16\right)\)
Diện tích ban đầu của tấm bìa:
\(350:\dfrac{1}{4}=1400\left(dm^2\right)\)
Đổi: \(1400\left(dm^2\right)=14\left(m^2\right)\)
Đáp số: \(14\left(m^2\right)\)