Nguyễn Trần Khôi Nguyên
Giới thiệu về bản thân
a) Tứ giác có nên là hình chữ nhật.
vuông cân tại có là trung tuyến nên cũng là đường phân giác .
Hình chữ nhật có đường chéo là tia phân giác nên là hình vuông.
b) vuông tại có nên vuông cân tại
Suy ra mà đồng vị nên //
c) Gọi là giao của với suy ra
vuông tại có là đường trung tuyến nên
có là đường trung tuyến mà suy ra vuông tại
a) Tứ giác có nên là hình chữ nhật.
b) Vì và nên // suy ra (so le trong).
Xét và có:
(giả thiết)
(so le trong)
Vậy (cạnh huyền - góc nhọn)
Suy ra (hai cạnh tương ứng) mà nên .
Tứ giác có hai đường chéo cắt nhau tại là trung điểm của mỗi đường nên là hình bình hành.
Mà suy ra là hình thoi.
c) Để là hình vuông thì hay vừa là đường trung tuyến vừa là đường cao nên vuông cân tại
d) Giả sử cắt tại và cắt tại .
Khi đó có nên cân tại suy ra
cân tại suy ra
Do đó,
Suy ra vuông tại hay
a) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
b) Ta có ; // suy ra .
Tứ giác có ba góc vuông nên là hình chữ nhật.
Khi đó hai đường chéo cắt nhau tại trung điểm của mỗi đường, mà nên là trung điểm của .
Suy ra thẳng hàng.
c) Để tứ giác là hình vuông thì ta cần hay vuông cân tại
a) Ta có suy ra nên và //
Do đó, là hình bình hành.
Lại có nên là hình thoi
b) // suy ra là hình thang.
Mà mà là phân giác nên .
Vậy là hình thang cân.
c) có nên là tam giác cân.
Xét và có:
(giả thiết)
(đối đỉnh)
(so le trong)
Vậy (g.c.g) suy ra (hai cạnh tương ứng).
Khi đó là đường trung tuyến và (hai cạnh tương ứng)
Mà suy ra hay là đường trung tuyến.
Khi đó, có ba đường trung tuyến đồng quy.
a) Ta có và suy ra .
Mặt khác .
Xét và có
( giả thiết)
(chứng minh trên)
Suy ra (g.c.g)
b) Từ suy ra (hai cạnh tương ứng)
Chứng minh tương tự cho và
Suy ra và .
Khi đó
c) Tứ giác là hình thoi vì có bốn cạnh bằng nhau.
Mà có và nên là tam giác vuông cân tại
Suy ra .
Tương tự nên .
Hình thoi có nên nó là hình vuông.
a) Tứ giác có nên là hình chữ nhật.
b) Vì là hình chữ nhật nên //
Xét và có:
( giả thiết)
(đồng vị)
Vậy (cạnh huyền - góc nhọn)
Suy ra (hai cạnh tương ứng) mà nên và .
Do đó .
Tứ giác có // nên là hình bình hành.
Do đó, hai đường chéo cắt nhau tại trung điểm của mỗi đường hay thẳng hàng.
c) Để hình chữ nhật là hình vuông thì
Mà và nên
Từ suy ra .
Vậy cần thêm điều kiên cân tại .
) Vì suy ra BC= AB/2=AD
ABCD là hình chữ nhật nên AB=DC suy ra 1/2AB=1/2DC do đó AI=DK=AD
Tứ giác AIKD có AI//DK, AI=DK nên tứ giác AIKD là hình bình hành
Lại có AD=AI nên AIKD là hình thoi
Mà góc IAD= 90 độ do đó AIKD là hình vuông
Vậy tứ giác AIKD là hình vuông
Chứng minh tương tự cho tứ giác BIKC
Vậy tứ gáic BIKC là hình vuông
b) VÌ AIKD là hình vuông nên DI là tia phân giác góc ADK nên góc IDK = 45 độ
Tương tự góc ICK = 45 độ
Tam giác IDC cân có góc DIC = 90 độ nên là tam gaic vuông cân
Vậy tam giác IDC là tam gáic vuông cân
c) Vì AIKD, BCKI là các hình vuông nên hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường nên SI=SK=DI/2 và IR=RK=IC/2
=>ISKR là hình thoi
Lại có góc DIC= 90 độ nên ISKR là hình vuông
Vậy ISKR là hình vuông
1: AM+MB=AB
BN+NC=BC
CP+PD=CD
QD+QA=AD
mà AB=BC=CD=AD và AM=BN=CP=QD
nên BM=CN=PD=QA
2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có
MA=NB
AQ=BM
Do đó: ΔMAQ=ΔNBM
=>MQ=MN(1)
Xét ΔMBN vuông tại B và ΔNCP vuông tại C có
MB=NC
BN=CP
Do đó: ΔMBN=ΔNCP
=>MN=NP(2)
Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có
NC=PD
CP=DQ
Do đó: ΔNCP=ΔPDQ
=>NP=PQ(3)
Từ (1),(2),(3) suy ra MQ=MN=NP=PQ
ΔMAQ=ΔNBM
=>
mà (ΔBMN vuông tại B)
nên
=>
=>
Xét tứ giác MNPQ có
MN=NP=PQ=MQ
nên MNPQ là hình thoi
Hình thoi MNPQ có
nên MNPQ là hình vuông
a/Ta có
IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Ta có
MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB
Mà
=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)
b/
Ta có
MI//AB (cmt) => MK//AB
AK//MC (cạnh đối hbh AMCK) => AK//MB
=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Để AMCK là hình vuông => AM là đường cao của tg ABC
Mà AM là trung tuyến của tg ABC (gt)
=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)
=> Để AMCK là hình vuông thì tg ABC vuông cân tại A
) vuông cân nên góc B= góc C = 45 độ
Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ
Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ
Vậy tam giác BEH vuông tại H
b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE
Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)
Tứ giác EFGH có EH//FG, EH=FG
=>tứ giác EFGH là hình bình hành
Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật
Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông
Vậy EFGH là hình vuông