Phạm Quang Lộc

Giới thiệu về bản thân

Lớp 6A2 THCS Nam Hà.
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Sửa dòng cuối chỗ ''Vì phần mẫu của \(A< B\)'' thành ''Vì phần mẫu của \(\dfrac{1998}{1999^{1999}+1999}< \dfrac{1998}{1999^{2000}+1999}\)'' nhé.

\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\)

\(\dfrac{1}{1999}A=\dfrac{1999^{1999}+1}{1999^{1999}+1999}\)

\(\dfrac{1}{1999}A=\dfrac{1999^{1999}}{1999^{1999}}-\dfrac{1998}{1999^{1999}+1999}\)

\(\dfrac{1}{1999}A=1-\dfrac{1998}{1999^{1999}+1999}\)

\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)

\(\dfrac{1}{1999}B=\dfrac{1999^{2000}+1}{1999^{2000}+1999}\)

\(\dfrac{1}{1999}B=\dfrac{1999^{2000}}{1999^{2000}}-\dfrac{1998}{1999^{2000}+1999}\)

\(\dfrac{1}{1999}B=1-\dfrac{1998}{1999^{2000}+1999}\)

Vì  \(\dfrac{1998}{1999^{1999}+1999}>\dfrac{1998}{1999^{2000}+1999}=>\dfrac{1}{1999}A< \dfrac{1}{1999}B=>A< B\)

 

\(1-\left(-x+\dfrac{9}{5}\right)=\dfrac{5}{6}+\left(-\dfrac{7}{12}\right)\)

\(=>1-\left(-x+\dfrac{9}{5}\right)=\dfrac{1}{4}\)

\(=>-x+\dfrac{9}{5}=1-\dfrac{1}{4}\)

\(=>-x+\dfrac{9}{5}=\dfrac{3}{4}\)

\(=>-x=\dfrac{3}{4}-\dfrac{9}{5}\)

\(=>-x=-\dfrac{21}{20}\)

\(=>x=\dfrac{21}{20}\)

Độ dài cạnh đáy là:

$10,2\times2:4=5,1(cm)$

Vì không có đáp án nào đúng nên ta không chọn đáp án nào cả.

Bài giải

Ta có sơ đồ như sau:

Số bé: $2$ phần

Số lớn: $3$ phần

Theo sơ đồ, tổng số phần bằng nhau là:

$2+3=5$(phần)

Số bé là:

$60:5\times2=24$

Số lớn là:

$60-24=36$

Vậy ta chọn đáp án $A$

Vì có dãy trên có nhân với số có tận cùng là $0$ như $10$ thì ta nhận ra rằng số đó luôn chia hết cho $2$ và $5$

Ta có một số mà nhân với số chia hết cho $3$ như $9$. VD: $2$ chia hết cho $9$; $2\times9$ thì chia hết cho $3$. Vậy dãy trên cũng chia hết cho $3$

Vậy ta chọn đáp án $D$

a, $5^{3} =5\times5\times5=125$

$3^{5} =3\times3\times3=27$

$125>27=>5^{3}>3^{5}$

$3^{2}=3\times3=9$

$2^{3}=2\times2\times2=8$

$9>8=>3^{2}>2^{3}$

$2^{6} =2\times2\times2\times2\times2\times2=64$

$6^{2}=6\times6=36$

$64>36=>2^{6}>6^{2}$

b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$

$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$

$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$

c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$

$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$

$1568239201<8036054027=>199^{20}<2003^{15}$

d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$

$11^{21}<27^{21}=>3^{99}>11^{21}$

$3^{2n}=9^n$

$2^{3n}=8^n$

$9>8=>3^{2n}>2^{3n}$

 

 

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

$C=1+4+...+4^{6}$

$4C=4+4^{2}+...+4^{7}$

$4C-C=4+4^{2}+...+4^{7}-1-4-...-4^{6}$

$3C=4^{7}-1$

$C=\dfrac{4^{7}-1}{3}$


 

Cách 1: D={x|25-x≤7}

Cách 2: D={18;19;20;21;22;23;24;25}