Phạm Quang Lộc
Giới thiệu về bản thân
\(32,1+5,1\times32,1+5,9-32,1\\ =32,1\times\left(1+5,1-1\right)+5,9\\ =32,1\times5,1+5,9\\ =163,71+5,9\\ =169,61\)
Ta có công thức: \(\dfrac{n\left(n-1\right)}{2}\)
Thay vào bài, ta được:
\(\dfrac{n\left(n-1\right)}{2}=91\\ n\left(n-1\right)=91.2\\ n\left(n-1\right)=182\\ 14\left(14-1\right)=182\)
Vậy \(n=14\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\)
Ta có: \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}-\dfrac{1}{100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)
Hay \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}\)
Vì \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
Vậy biểu thức \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{90}\\ =\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{90}\\ =\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}\right)+\dfrac{1}{90}\\ =\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\left(1-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\left(\dfrac{5}{5}-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\dfrac{4}{5}+\dfrac{1}{90}\\ =\dfrac{72}{90}+\dfrac{1}{90}=\dfrac{73}{90}\)
\(\dfrac{3}{4}+\dfrac{3}{4}\\ =\dfrac{3+3}{4}\\ =\dfrac{6}{4}\\ =\dfrac{6:2}{4:2}\\ =\dfrac{3}{2}\)
\(\dfrac{2021\times2023-1}{2020\times2023+2022}\\ =\dfrac{2023\times\left(2020+1\right)-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023\times1-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2023-1}{2023\times2020+2022}\\ =\dfrac{2023\times2020+\left(2023-1\right)}{2023\times2020+2022}\\ =\dfrac{2023\times2020+2022}{2023\times2020+2022}\\ =1\)
Công thức tính tổng của dãy số có quy luật:
Tìm số số hạng của dãy số đó: (Số cuối - Số đầu) : Khoảng cách của mỗi số hạng +1
Tìm tổng của dãy số hạng đó: (Số cuối + Số đầu) x Số số hạng : 2
Áp dụng vào bài, ta có:
Tìm số số hạng của dãy số 1, 2, 3, 4, 5, 6, 7, ...(a-1), a: (a-1):1+1
Tìm tổng của dãy số 1, 2, 3, 4, 5, 6, 7, ...(a-1), a: (a+1) x Số số hạng
= (a+1) x [(a-1):1+1] = (a+1) x [(a-1)+1] = (a+1) x [a-1+1] = (a+1) x [a+(1-1)] = (a+1) x a hay a x (a+1) => D. a x (a+1)
Bài giải
Đổi: $8$ tạ $=800kg$
Hôm qua cửa hàng bán được số gạo là:
$800\times\dfrac{2}{5}=320(kg)$
Hôm nay cửa hàng bán được số gạo là:
$800\times\dfrac{3}{10}=240(kg)$
Trung bình mỗi ngày cửa hàng bán được số gạo là:
$(320+240):2=280(kg)$
Đáp số: $280kg$ gạo.
$(1,234+2,366)\times3$
$=3,6\times3$
$=10,8$
$1,24+2,366\times3$
$=1,24+7,098$
$=8,338$
Sửa dòng 3: = 2,35kg x (1 + 1 + 1)