![](https://rs.olm.vn/images/background/bg0.jpg?v=2)
![](https://rs.olm.vn/images/avt/1.png?131672234059)
when the imposter is sus
Giới thiệu về bản thân
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_mam_non.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_tan_binh.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_chuyen_can.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_cao_thu.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_thong_thai.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_dai_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
đề không rõ ràng, vẽ xong thì thấy sai đề, chơi thế ai chơi lại
Từ tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{3}=\dfrac{2y-6}{9}=\dfrac{\left(3x+2\right)+\left(2y-6\right)}{3+9}=\dfrac{3x+2y-4}{12}=\dfrac{3x+2y-4}{6x}\)
Suy ra 6x = 12 <=> x = 12 : 6 = 2
Khi đó \(\dfrac{3x+2}{3}=\dfrac{3\cdot2+2}{3}=\dfrac{8}{3}\)
Suy ra \(\dfrac{2y-6}{9}=\dfrac{8}{3}\Leftrightarrow2y-6=\dfrac{8\cdot9}{3}=24\)
\(\Leftrightarrow2y=24+6=30\Leftrightarrow y=30:2=15\)
Vậy x = 2; y = 15
a) Xét hai tam giác ABH và ACH ta có:
- AB = AC (vì ABC là tam giác cân)
- HB = HC (vì H là trung điểm của BC)
- \(\widehat{B}=\widehat{C}\) (vì ABC là tam giác cân)
Vậy \(\Delta ABH=\Delta ACH\) (c.g.c)
b) Xét hai tam giác NBH và MCH ta có:
- NB = MC (vì AB = AC, M là trung điểm của AC và N là trung điểm của AB)
- HB = HC (đã chứng minh trên)
- \(\widehat{B}=\widehat{C}\) (đã chứng minh trên)
Suy ra \(\Delta NBH=\Delta MCH\) (c.g.c)
Khi đó HN = HM (vì hai cạnh tương ứng)
Gọi số học sinh khối 6; 7; 8 của trường đó lần lượt là x; y; z (học sinh).
Theo đề, ta có x + y + z = 441
Và \(\left(1-\dfrac{1}{3}\right)x=\left(1-\dfrac{1}{4}\right)y=\left(1-\dfrac{1}{5}\right)z\)
Suy ra \(\dfrac{2}{3}x=\dfrac{3}{4}y=\dfrac{4}{5}z\) hay \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{441}{\dfrac{49}{12}}=108\)
Suy ra \(x=108\cdot\dfrac{3}{2}=162;y=108\cdot\dfrac{4}{3}=144;z=108\cdot\dfrac{5}{4}=135\)
Vậy số học sinh của mỗi khối lần lượt là 162 học sinh, 144 học sinh & 135 học sinh
Theo đề ta có:
\(\overline{2023a}⋮2022\) (với a có n chữ số, \(n\inℕ^∗\))
\(\Leftrightarrow\left(2023\cdot10^n+a\right)⋮2022\)
Vì \(2023\equiv1\left(mod2022\right)\Leftrightarrow2023\cdot10^n+a\equiv10^n+a\left(mod2022\right)\)
Mà \(\overline{2023a}⋮2022\Rightarrow\left(10^n+a\right)⋮2022\)
Xét \(a⋮2022\). Vì \(\left(10^n+a\right)⋮2022\) nên \(10^n⋮2022\) (không có nghiệm).
Khi đó \(a⋮̸2022\). Đặt x sao cho \(a\equiv x\left(mod2022\right)\).
Suy ra \(10^n\equiv2022-x\left(mod2022\right)\)
Ta có bảng sau:
n | 1 | 2 | 3 | 4 | 5 | ... |
2022 - x | 10 | 100 | 1000 | 1912 | 922 | ... |
x | 2012 | 1922 | 1022 | 110 | 1100 | ... |
Min(a) > 10n | Không có | Không có | Không có | 2132 | 11210 | ... |
Chọn hay loại? | Loại | Loại | Loại | Chọn | Loại | ... |
Vậy số tự nhiên a cần tìm là 2132.
P/s: bài này có vẻ không phải lớp 7!!!
Bài 5: Ta có bảng:
Đa thức | \(f\left(x\right)=5x^2-7+6x-8x^3-x^4\) | \(g\left(x\right)=x^4+5+8x^3-5x^2\) |
Được sắp xếp | \(-x^4-8x^3+5x^2+6x-7\) | \(x^4+8x^3-5x^2+5\) |
Bậc | 4 | 4 |
HSCN | -1 | 1 |
HSTD | -7 | 5 |
(HSCN: hệ số cao nhất, HSTD: hệ số tự do)
b)\(f\left(x\right)+g\left(x\right)=\left(5x^2-7+6x-8x^3-x^4\right)+\left(x^4+5+8x^3-5x^2\right)=6x-2\)
\(f\left(x\right)-g\left(x\right)=\left(5x^2-7+6x-8x^3-x^4\right)-\left(x^4+5+8x^3-5x^2\right)=-2x^4-16x^3+10x^2+6x-12\)
c) Ta có \(P\left(x\right)=f\left(x\right)+g\left(x\right)=6x-2\)
Vì \(\left|x\right|=1\) nên \(x=\pm1\)
Ta có bảng:
\(x\) | 1 | -1 |
\(6x-2\) | 4 | -8 |
Vậy P(x) = 4 hoặc -8 khi |x| = 1
Bài 6:
a) Sai đề: f(-1) bằng bao nhiêu???
b) Khi P(0) = 4 suy ra c = 4
Khi P(1) = 7 suy ra a + b + c = 7 <=> a + b = 7 - 4 = 3
Khi P(-1) = 10 suy ra a - b + c = 10 <=> a - b = 10 - 4 = 6
Từ đó suy ra 2a = (a + b) + (a - b) = 3 + 6 = 9 <=> a = 9/2 = 4,5
Suy ra b = 3 - 4,5 = -1,5
Vậy a = 4,5; b = -1,5; c = 4
Bài 7: Ta có:
\(-1001x^7=-1000x^7-x^7\)
\(1001x^6=1000x^6+x^6\)
...
\(-1001x=-1000x-x\)
Suy ra \(P\left(x\right)=x^8-1000x^7-x^7+1000x^6+x^6-...-1000x-x+250\)
\(P\left(x\right)=x^7\left(x-1000\right)-x^6\left(x-1000\right)+x^5\left(x-1000\right)-...+x\left(x-1000\right)-x+250\)
Đặt x = 1000 ta được:
\(P\left(x\right)=-1000+250=-750\)
Biện luận trước khi giải: \(a,b\inℕ^∗\). Khi a hoặc b bằng 0 thì biểu thức không xác định.
Bài làm:
Ta có \(1+2+3+...+a=\dfrac{a\left(a+1\right)}{2}\)
Và \(1+2+3+...+b=\dfrac{b\left(b+1\right)}{2}\)
Suy ra \(\dfrac{a\left(a+1\right)}{2a}< \dfrac{b\left(b+1\right)}{2b}\) <=> \(\dfrac{a+1}{2}< \dfrac{b+1}{2}\)
<=> \(a+1< b+1\) <=> a < b
Trước hết ta có \(\left(\dfrac{x}{y}\right)^{-z}=\dfrac{1}{\left(\dfrac{x}{y}\right)^z}=\dfrac{1}{\dfrac{x^z}{y^z}}=\dfrac{y^z}{x^z}\)
Suy ra:
\(A=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
\(A=\left(\dfrac{1}{4}\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
\(A=4\cdot4^2\cdot\dfrac{3^2}{4^2}\cdot\dfrac{4}{5}\cdot\dfrac{3^3}{2^3}=4^2\cdot3^5\text{}\div5\div2^3\)
\(A=2^4\div2^3\cdot3^5\div5=2\cdot3^5\div5=2\cdot243\div5=\dfrac{486}{5}\)
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)
\(=1+\dfrac{3\cdot2\div2}{2}+\dfrac{4\cdot3\div2}{3}+...+\dfrac{21\cdot20\div2}{20}\)
\(=1+\dfrac{3}{2}+2+...+\dfrac{21}{2}\) (A)
Trong (A) có \(\dfrac{\dfrac{21}{2}-1}{\dfrac{3}{2}-1}+1=20\) (số hạng)
Suy ra \(\left(A\right)=\left(\dfrac{21}{2}+1\right)\cdot20\div2=115\)
Vậy \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)=115\)