

subjects
Giới thiệu về bản thân



































diện tích xung quanh HLP:
\(5,4\times5,4\times4=116,64\left(dm^2\right)\)
diện tích toàn phần HLP:
\(5,4\times5,4\times6=174,96\left(dm^2\right)\)
⇒ đáp án A
gọi s(km) là quãng đường AB) (s>0)
vận tốc xe lúc về là: 45 - 10 = 35 (km/h)
thời gian xe đi từ A đến B: \(\frac{s}{45}\left(giờ\right)\)
thời gian xe đi từ B đến A: \(\frac{s}{35}\left(giờ\right)\)
vì thời gian về nhiều hơn thời gian đi 12p nên ta có phương trình:
\(\frac{s}{35}-\frac{s}{45}=\frac{12}{60}\)
\(45s-35s=\frac{12}{60}\cdot35\cdot45\)
\(10s=315\Rightarrow s=31,5\left(TM\right)\)
vậy quãng đường AB dài 31,5km
1.1) a) \(\left|2x-5\right|=4\)
\(\Rightarrow\left[\begin{array}{l}2x-5=4\\ 2x-5=-4\end{array}\Rightarrow\left[\begin{array}{l}2x=9\\ 2x=1\end{array}\Rightarrow\left[\begin{array}{l}x=\frac92\\ x=\frac12\end{array}\right.\right.\right.\)
vậy \(x\in\left\lbrace\frac92;\frac12\right\rbrace\)
b)) \(\frac13-\left|\frac54-2x\right|=\frac14\)
\(\left|\frac54-2x\right|=\frac13-\frac14\)
\(\left|\frac54-2x\right|=\frac{1}{12}\)
\(\Rightarrow\left[\begin{array}{l}\frac54-2x=\frac{1}{12}\\ \frac54-2x=-\frac{1}{12}\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac54-\frac{1}{12}\\ 2x=\frac54-\left(-\frac{1}{12}\right)\end{array}\right.\right.\)
\(\Rightarrow\left[\begin{array}{l}2x=\frac76\\ 2x=\frac43\end{array}\Rightarrow\left[\begin{array}{l}x=\frac{7}{12}\\ x=\frac23\end{array}\right.\right.\)
vậy \(x\in\left\lbrace\frac{7}{12};\frac23\right\rbrace\)
\(c.\frac12-\left|x+\frac15\right|=\frac13\)
\(\left|x+\frac15\right|=\frac12-\frac13\)
\(\left|x+\frac15\right|=\frac16\)
\(\Rightarrow\left[\begin{array}{l}x+\frac15=\frac16\\ x+\frac15=-\frac16\end{array}\Rightarrow\left[\begin{array}{l}x=\frac16-\frac15\\ x=-\frac16-\frac15\end{array}\right.\right.\Rightarrow\left[\begin{array}{l}x=-\frac{1}{30}\\ x=-\frac{11}{30}\end{array}\right.\)
vậy \(x\in\left\lbrace-\frac{1}{30};-\frac{11}{30}\right\rbrace\)
\(d.\frac34-\left|2x+1\right|=\frac78\)
\(\left|2x+1\right|=\frac34-\frac78\)
\(\left|2x+1\right|=-\frac18\)
\(\) ⇒ x thuộc rỗng
1.2) a) \(2\left|2x-3\right|=\frac12\)
\(\left|2x-3\right|=\frac12:2=\frac12\cdot\frac12=\frac14\)
\(\left[\begin{array}{l}2x-3=\frac14\\ 2x-3=-\frac14\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac14+3\\ 2x=-\frac14+3\end{array}\right.\right.\)
\(\left[\begin{array}{l}2x=\frac{13}{4}\\ 2x=\frac{11}{4}\end{array}\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:2=\frac{13}{4}\cdot\frac12=\frac{13}{8}\\ x=\frac{11}{4}:2=\frac{11}{4}\cdot\frac12=\frac{11}{8}\end{array}\right.\right.\)
vậy: \(x\in\left\lbrace\frac{13}{8};\frac{11}{8}\right\rbrace\)
\(\frac{b)1}{3}-\left|\frac54-2x\right|=\frac14\)
\(\left|\frac54-2x\right|=\frac13-\frac14\)
\(\left|\frac54-2x\right|=\frac{1}{12}\)
\(\left[\begin{array}{l}\frac54-2x=\frac{1}{12}\\ \frac54-2x=-\frac{1}{12}\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac54-\frac{1}{12}\\ 2x=\frac54-\left(-\frac{1}{12}\right)\end{array}\right.\right.\)
\(\left[\begin{array}{l}2x=\frac76\\ 2x=\frac43\end{array}\Rightarrow\left[\begin{array}{l}x=\frac76:2=\frac76\cdot\frac12=\frac{7}{12}\\ x=\frac43:2=\frac43\cdot\frac12=\frac23\end{array}\right.\right.\)
vậy \(x\in\left\lbrace\frac{7}{12};\frac23\right\rbrace\)
\(c.\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
\(\left|x+\frac{4}{15}\right|=3,75-2,15\)
\(\left|x+\frac{4}{15}\right|=1,6\)
\(\left[\begin{array}{l}x+\frac{4}{15}=1,6\\ x+\frac{4}{15}=-1,6\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1,6-\frac{4}{15}\\ x=-1,6-\frac{4}{15}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac43\\ x=-\frac{28}{15}\end{array}\right.\)
vậy \(x\in\left\lbrace\frac43;-\frac{28}{15}\right\rbrace\)
\(\frac{x+1}{x-1}+\frac{x-1}{x+1}=4\) (đkxđ: \(x\ne\pm1\) )
\(\left(x+1\right)^2+\left(x-1\right)^2=4x^2-4\)
\(x^2+2x+1+x^2-2x+1=4x^2-4\)
\(2x^2+2=4x^2-4\)
\(4x^2-2x^2=4+2\)
\(2x^2=6\)
\(x^2=3\Rightarrow x=\pm\sqrt{3}\left(TM\right)\)
\(1)\left(2x+1\right)^2+\left(2x-1\right)^2\)
\(=4x^2+4x+1+4x^2-4x+1\)
\(=8x^2+2\)
\(2)-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left\lbrack\left(x+1\right)^2+\left(x-1\right)^2\right\rbrack\)
\(=-\left\lbrack\left(x^2+2x+1\right)+\left(x^2-2x+1\right)\right\rbrack\)
\(=-\left\lbrack2x^2+2\right\rbrack=-2x^2-2\)
\(3)\left(x+2y\right)^2-\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)\left(x+2y-x+2y\right)\)
\(=2x\cdot4y=8xy\)
\(4)\left(3x+y\right)^2+\left(x-y\right)^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2+4xy+2y^2\)
\(5)-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left\lbrack\left(x+5\right)^2+\left(x-3\right)^2\right\rbrack\)
\(=-\left\lbrack x^2+10x+25+x^2-6x+9\right\rbrack\)
\(=-\left\lbrack2x^2+4x+34\right\rbrack=-2x^2-4x-34\)
\(6)\left(3x-2\right)^2-\left(3x-1\right)^2\)
\(=\left(3x-2+3x-1\right)\left(3x-2-3x+1\right)\)
\(=\left(6x-3\right)\cdot\left(-1\right)=-6x+3\)
\(7)\left(x-4y\right)^2+\left(x+4y\right)^2\)
\(=x^2-8xy+16y^2+x^2+8xy+16y^2\)
\(=2x^2+32y^2\)
\(8)-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=-\left\lbrack\left(4x^2-12x+9)+\left(25x^2-30x+9\right)\right\rbrack\right.\)
\(=-29x^2+42x-18\)
\(9)\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=\left(-2x+3+5x-3\right)\left(-2x+3-5x+3\right)\)
\(=3x\cdot\left(-7x+6\right)\)
\(=-21x^2+18x\)
\(a.x:\left(-\frac23\right)-\frac12\left|+\frac56\right|\cdot\frac12=\frac34\)
\(x\cdot\left(-\frac32\right)-\frac12+\frac{5}{12}=\frac34\)
\(x\cdot\left(-\frac32\right)=\frac34-\frac{5}{12}+\frac12\)
\(x\cdot\left(-\frac32\right)=\frac56\)
\(x=\frac56:\left(-\frac32\right)=\frac56\cdot\left(-\frac23\right)\)
\(x=-\frac59\)
\(b.\left(-\frac23\right)x+\frac38\cdot\left(-\frac85\right)=-\frac{8}{15}\)
\(\left(-\frac23\right)x-\frac35=-\frac{8}{15}\)
\(\left(-\frac23\right)x=-\frac{8}{15}+\frac35=\frac{1}{15}\)
\(x=\frac{1}{15}:\left(-\frac23\right)=\frac{1}{15}\cdot\left(-\frac32\right)\)
\(x=-\frac{1}{10}\)
\(x^2-4=\left(x-2\right)\left(x+2\right)\)
\(\frac{2}{1\times2+}\frac{2}{2\times3}+\frac{2}{3\times4}+\cdots+\frac{2}{98\times99}+\frac{2}{99\times100}\)
\(=2\cdot\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\cdots+\frac{1}{99\times100}\right)\)
\(=2\cdot\left(\frac11-\frac12+\frac12-\frac13+\cdots+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\cdot\left(\frac11-\frac{1}{100}\right)=2\cdot\frac{99}{100}=\frac{99}{50}\)
\(G=\frac{4x-1}{2x+3}=\frac{2\cdot\left(2x+3\right)-6-1}{2x+3}\)
\(=\frac{2\cdot\left(2x+3\right)-7}{2x+3}=2-\frac{7}{2x+3}\)
để G là số nguyên thì 2x+3 thuộc Ư(7) = \(\left\lbrace\pm1;\pm7\right\rbrace\)
vì x thuộc N nên \(x\ge0\)
\(\Rightarrow2x\ge0\Rightarrow2x+3\ge3\)
ta có: 2x + 3 = 7
⇒ 2x = 7 - 3 = 4
⇒ x = 4 : 2 = 2
vậy để G nhận giá trị nguyên thì x = 2
\(a.97-7\left(x-8\right)=3\cdot2^4\)
\(97-7\left(x-8\right)=48\)
\(7\left(x-8\right)=97-48\)
\(7\left(x-8\right)=49\)
\(x-8=49:7=7\)
\(x=7+8=15\)
\(b.5x^2-74=51\)
\(5x^2=51+74=125\)
\(x^2=125:5=25\)
\(\Rightarrow x=\pm5\)
\(c.3x+2-3x=216\)
\(0x=214\)
⇒ \(x\in\) rỗng
\(5\left(3x-4\right)^3=40\)
\(\left(3x-4\right)^3=40:5=8\)
⇒ 3x - 4 = 2
⇒ 3x = 2 + 4 = 6
⇒ x = 6 : 3 = 2