

Nguyễn thành Đạt
Giới thiệu về bản thân



































Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)
\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)
\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)
Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)
Với bổ đề trên thì :
\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)
\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)
\(E\text{=}2008\)
Trước tiên ta cần phải rút gọn biểu thức A trước.
Ta có : \(A\text{=}\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}\)
\(A\text{=}\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{x+\sqrt{2x+1}+\sqrt{x-\sqrt{2x+1}}}}\)
\(A\text{=}\dfrac{\sqrt{x-1}+1+|\sqrt{x-1}-1|}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\left(x\ge2\right)\)
\(A\text{=}\dfrac{2\sqrt{x-1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1}+1+\sqrt{2x-1}-1}\left(x\ge2\right)\)
\(A\text{=}\dfrac{\sqrt{2x-2}}{\sqrt{2x-1}}\)
Xét tử thức và mẫu thức của A ta thấy :
\(\sqrt{2x-2}< \sqrt{2x-1}\left(x\ge2\right)\)
\(\Rightarrow A< 1\left(đpcm\right)\)
\(\dfrac{3}{4}\times\left(\dfrac{5}{6}+\dfrac{7}{8}\right)\text{=}\dfrac{3}{4}\times\left(\dfrac{40}{48}+\dfrac{42}{48}\right)\)
\(\text{=}\dfrac{3}{4}\times\left(\dfrac{41}{24}\right)\)
\(\text{=}\dfrac{41}{32}\)
\(\dfrac{3}{2}:\dfrac{8}{4}+\dfrac{21}{48}\text{=}\dfrac{3}{2}:2+\dfrac{21}{48}\)
\(\text{=}\dfrac{3}{4}+\dfrac{21}{48}\text{=}\dfrac{36}{48}+\dfrac{21}{48}\text{=}\dfrac{57}{48}\)
Có điều kiện là n không vậy bạn.
( 1-1/2) : (1-1/3) : ( 1-1/4) = 1/2 : 2/3 : 3/4
= \(\dfrac{1}{2}\times\dfrac{3}{2}\times\dfrac{4}{3}\text{=}1\)
\(\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{4}\right)\)
\(\text{=}\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\text{=}\dfrac{5}{2}\)
c) ( 57-725) - ( 605-53)
= 57-725-605+53
= ( 57+53) -( 725+605)
= 110-1330
= -1220
a) -72.17+72.31 - 36 . 228
= -72.17 + 72. 31 - 36.2.114
= -72 .17 + 72 . 31 -72 . 114
= -72. ( 17-31+114)
= -72 . 100
= -7200
b) ..........
= -7 . ( 16-36.9) -(-125)
= -7 . ( 16-324) +125
=-7 . ( -308) +125
= 2156+125
= 2281
\(2^x+1\text{=}2^3\)
\(2^x\text{=}8-1\)
\(2^x\text{=}7\)
Bạn xem lại đề nhé.
Số hạng của dãy số trên là : \(\left(2026-1\right):1+1\text{=}2026\)
Ta xét với cặp : 1-2 ; 3-4 ; ......... ; 2025-2026=-1
Tổng của dãy số trên là : \(\dfrac{\left(1-2\right).2026}{2}\text{=}-1013\)