Nguyễn Tuấn Tú

Giới thiệu về bản thân

Muốn nhắn tin, liên hệ gì thì qua bên Hoc24 nha =] ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ ㅤㅤㅤ(bên này khóa chức năng tin nhắn rồi ;-;)ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤLink: https://hoc24.vn/vip/14348281728043ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ*Cứ kết bạn thoải mái nhé, t đồng ý cho :))ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ*với cả rảnh tay nhớ sang acc hoc24 của t r cho xin 1 follow nha~, t follow lại cho :Đㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ảnh:


Link Scratch: https://scratch.mit.edu/projects/1163563303/editor/

\(1<\frac{x}{7}<\frac{10}{7}\)

\(\frac77<\frac{x}{7}<\frac{10}{7}\)

\(7

\(x=8;x=9\)

a) \(\frac{x}{5}<\frac45\)

\(x<4\)

Mà x là số tự nhiên khác 0 nên:

\(x=1;x=2;x=3\)

b) \(\frac{x}{17}<\frac{2}{17}\)

\(x<2\)

Mà x là số tự nhiên khác 0 nên:

\(x=1\)

Sửa đề:
Cho tam giác ABC cân tại A, MB = MC (M thuộc BC).

a) \(\Delta ABC\) cân tại \(A\) (gt) có:

\(AB=AC\) (tính chất tam giác cân)

Xét \(\Delta ABM\)\(\Delta ACM\) có:

\(\begin{cases}AB=AC\left(cmt\right)\\ BM=CM\left(gt\right)\\ AMchung\end{cases}\)

\(\rArr\) \(\Delta ABM\) \(=\) \(\Delta ACM\) \(\left(c.c.c\right)\)

\(\rArr\) \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^{o}\) (2 góc kè bù) nên:

\(\widehat{AMB}=\widehat{AMC}=\frac{180^{o}}{2}=90^{o}\)

\(\rArr AM\bot BC\)

Vậy \(AM\bot BC\)

b) Ta có: \(\Delta ABM\) \(=\) \(\Delta ACM\) (cmt)

\(\rArr\) \(\widehat{MAB}=\widehat{MAC}\) (2 góc tương ứng)

Vậy \(\widehat{MAB}=\widehat{MAC}\)

Sửa đề theo đúng quy luật:

\(B=1+2+2^2+2^3+2^4+.....+2^{100}\)

\(2B=2+2^2+2^3+2^4+2^5+.....+2^{101}\)

\(2B-B=\left(2+2^2+2^3+2^4+2^5+.....+2^{101}\right)-\left(1+2+2^2+2^3+2^4+.....+2^{100}\right)\)

\(B=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+\cdots+\left(2^{100}-2^{100}\right)+2^{101}-1\)

\(B=2^{101}-1\)

Vậy \(B=2^{101}-1\)

Giá của món hàng khi tính thuế VAT bằng:

\(100\%+10\%=110\%\) (giá của món hàng nếu không tính thuế)

Nếu không tính thuế thì số tiền người đó cần trả khi mua món hàng là:

\(2915000:110\%=2650000\) (đồng)

Vậy nếu không tính thuế thì số tiền người đó cần trả khi mua món hàng là 2650000 đồng


\(\frac{14}{12}+\frac56\)

\(=\frac{14:2}{12:2}+\frac56\)

\(=\frac76+\frac56\)

\(=\frac{12}{6}\)

\(=2\)

\(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+...+\frac{5^2}{96\cdot101}\)

\(=5\left(\frac{5^{}}{1\cdot6}+\frac{5^{}}{6\cdot11}+\frac{5^{}}{11\cdot16}+...+\frac{5^{}}{96\cdot101}\right)\)

\(=5\left(1-\frac16+\frac16-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\cdots+\frac{1}{96}-\frac{1}{101}\right)\)

\(=5\left(1-\frac{1}{101}\right)\)

\(=5\cdot\frac{100}{101}\)

\(=\frac{500}{101}\)

Ta có:

+) \(\begin{cases}\frac{1}{201}<\frac{1}{200}\\ \frac{1}{202}<\frac{1}{200}\\ \ldots\\ \frac{1}{250}<\frac{1}{200}\end{cases}\)

\(\rArr\frac{1}{201}+\frac{1}{202}+\cdots+\frac{1}{250}<\frac{1}{200}+\frac{1}{200}+\cdots+\frac{1}{200}=\frac{50}{200}=\frac14\) (1)

+) \(\begin{cases}\frac{1}{251}<\frac{1}{250}\\ \frac{1}{252}<\frac{1}{250}\\ \ldots\\ \frac{1}{300}<\frac{1}{250}\end{cases}\)

\(\rArr\frac{1}{251}+\frac{1}{252}+\cdots+\frac{1}{300}<\frac{1}{250}+\frac{1}{250}+\cdots+\frac{1}{250}=\frac{50}{250}=\frac15\) (2)

Từ (1) và (2) suy ra:

\(A=\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+\cdots+\frac{1}{300}<\frac14+\frac15=\frac{9}{20}\)

Vậy \(A<\frac{9}{20}\)

\(12+x:5=15\times2\)

\(12+x:5=30\)

\(x:5=30-12\)

\(x:5=18\)

\(x=18\times5\)

\(x=90\)