Duc Nguyen
Giới thiệu về bản thân
Vì \(\left|4-x\right|\ge0\forall x\)
\(\Rightarrow11+\left|4-x\right|\ge11+0=11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow\) GTNN của Alà 11\(\Leftrightarrow\left|4-x\right|=0\)
\(\left|4-x\right|=0\)
\(4-x=0\)
\(x=0+4=4\)
Vậy GTNN của A là 11 khi x = 4
\(A=\left[x+\left(x+7\right)\right]-\left[\left(x+4\right)-\left(x-4\right)\right]\)
\(A=\left(x+x+7\right)-\left(x+4-x+4\right)\)
\(A=\left(2x+7\right)-\left(x-x+4+4\right)\)
\(A=2x+7-8\)
\(A=2x-1\)
\(B=x\left\{\left(x-3\right)-\left[\left(x+3\right)-\left(-x-2\right)\right]\right\}\)
\(B=x\left\{\left(x-3\right)-\left[x+3-\left(-x\right)+2\right]\right\}\)
\(B=x\left[\left(x-3\right)-\left(x+3+x+2\right)\right]\)
\(B=x\left(x-3-2x+5\right)\)
\(B=x\left(x-2x-3+5\right)\)
\(B=x\left(-x+2\right)\)
\(B=-x^2+2x\)
\(B=2x-x^2\)
Nhưng mà mình k bt ss kiểu j
\(\dfrac{121\times75\times130\times169}{39\times60\times11\times198}\)
\(=\dfrac{25\times169}{6\times18}\)
\(=\dfrac{4225}{108}\)
\(\dfrac{7}{9}+\dfrac{1}{3}< x< \dfrac{43}{8}+\dfrac{1}{10}\)
\(\dfrac{10}{9}< x< \dfrac{219}{40}\)
Mà \(x\inℕ\)
\(\Rightarrow\dfrac{10}{9}< 2\le x\le5< \dfrac{219}{40}\)
\(\Rightarrow2\le x\le5\)
\(\Rightarrow x\in\left\{2;3;4;5\right\}\)
Vậy: \(x\in\left\{2;3;4;5\right\}\)
\(7,75-\left(0,5\times y\div5-6,2\right)=5\)
\(0,5\times y\div5-6,2=7,75-5=2,75\)
\(0,5\div5\times y-6,2=2,75\)
\(0,1\times y=2,75+6,2=8,95\)
\(\dfrac{1}{10}y=8,95\)
\(y=8,95\times10=89,5\)
\(y\div6\times7,2+1,3\times y+y\div2+15=19,95\)
\(1,2\times y+1,3\times y+0,5y=19,95-15=4,95\)
\(y\left(1,2+1,3+0,5\right)=4,95\)
\(2y=4,95\)
\(y=4,95\div2=2,475\)
\(\dfrac{\left(x+1\right)}{3}=\dfrac{3}{\left(x+1\right)}\)
\(\left(x+1\right)^2=3\cdot3=9\)
\(\left(x+1\right)^2=\left(\pm3\right)^2\)
\(\Rightarrow x+1=\pm3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3-1=2\\x=-3-1=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{-4;2\right\}\)
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\dfrac{x}{2}=\dfrac{2y}{8}=\dfrac{z}{3}\)
ADTCDTSBN, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{8}=\dfrac{z}{3}=\dfrac{x-2y+z}{2-8+3}=\dfrac{6}{-3}=-2\)
\(\dfrac{x}{2}=-2\Rightarrow x=-2\cdot2=-4\)
\(\dfrac{y}{4}=-2\Rightarrow x=-2\cdot4=-8\)
\(\dfrac{z}{3}=-2\Rightarrow x=-2\cdot3=-6\)\
Vậy x=-4
y=-8
z=-6
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\dfrac{x}{2}=\dfrac{2y}{8}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{8}=\dfrac{z}{6}=\dfrac{x-2y+z}{2-8+6}=\dfrac{6}{0}\)(vô lí)
=> Không có x, y, z thỏa mãn đề bài
\(\left(\left|x\right|-2011\right)^{\left(2+2008\right)}\cdot\left(2+2009\right)=-\left(2^3-3^2\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(8-9\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=1\)
\(\left(\left|x\right|-2011\right)^{2010}=\dfrac{1}{2011}\)
???