Duc Nguyen

Giới thiệu về bản thân

ok
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

x2+4x-5=0

x2+4x-5+9=9

x2+4x+4=9

(x+2)2=9

(x+2)ϵ{3;-3}

x+2=3 => x=1

x+2=-3 => x=-5

vậy x=1, -5

\(f\left(x\right)=-2x^4+3x^3-4x+2x^4-x^2-3x^3-x+1\)

\(f\left(x\right)=-2x^4+2x^4+3x^3-3x^3-4x-x-x^2+1\)

\(f\left(x\right)=-5x-x^2+1\)

\(\sqrt[3]{x}-20+\sqrt{x}+15=7\)

\(\sqrt[3]{x}-20+15+\sqrt{x}=7\)

\(\sqrt[3]{x}-5+\sqrt{x}=7\)

\(\sqrt[3]{x}+\sqrt{x}=7+5\)

\(\sqrt[3]{x}+\sqrt{x}=12\)

còn lại mình chịu

a) Xét ΔACE và ΔAKE có:

\(\widehat{ACE}=\widehat{AKE}=90^0\)

AE chung

\(\widehat{CAE}=\widehat{KAE}\) (AE là tia phân giác \(\widehat{BAC}\) mà K ϵ AB ⇒ AE là tia phân giác \(\widehat{KAC}\) )

⇒ ΔACE = ΔAKE (cạnh huyền - góc nhọn)

⇒ AC = AK (2 cạnh tương ứng)

b) Xét ΔABC có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (Tổng 3 góc trong tam giác)

\(60^0+\widehat{ABC}+90^0=180^0\)

\(150^0+\widehat{ABC}=180^0\)

\(\widehat{ABC}=180^0-150^0\)

\(\widehat{ABC}=30^0\)

\(\Rightarrow\widehat{KBE}\left(K\in AB,E\in BC\right)\)

\(\widehat{BAC}=60^0\Rightarrow\widehat{KAC}=60^0\left(K\in AB\right)\)

mà AE là tia phân giác \(\widehat{KAC}\) 

\(\Rightarrow\widehat{KAE}=\dfrac{\widehat{KAC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Rightarrow\widehat{KBE}=\widehat{KAE}=30^0\)

Vì ΔKEB và ΔKEA là hai tam giác vuông

⇒ \(\widehat{KEB}+\widehat{KBE}=\widehat{KEA}+\widehat{KAE}=90^0\) (Tổng hai góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{KEB}=\widehat{KEA}\)

Xét ΔKEB và ΔKEA có:

\(\widehat{BKE}=\widehat{AKE}=90^0\)

AK chung

\(\widehat{KEB}=\widehat{KEA}\)

⇒ ΔKEB = ΔKEA (cạnh góc vuông - góc nhọn kề) ⇒ KB = KA (hai cạnh tương ứng) mà CA = KA ⇒ CA = KB ⇒ CA + CA = KB + KA ⇒ 2AC = AB (đpcm) c) Ta có: \(\widehat{KAE}+\widehat{EAC}=\widehat{KAE}\) (hai góc kề nhau) \(30^0+\widehat{EAC}=60^0\) \(\widehat{EAC}=60^0-30^0\)

\(\widehat{EAC}=30^0\)

Vì ΔAEC là tam giác vuông

\(\widehat{AEC}+\widehat{EAC}=90^0\)

\(\widehat{AEC}+30^0=90^0\)

\(\widehat{AEC}=90^0-30^0=60^0\)

\(\Rightarrow\widehat{BKE}>\widehat{AEC}\left(90^0>60^0\right)\)

⇒ EB > AC (quan hệ góc cạnh tam giác)

\(R\left(x\right)=x^2+3x\)

a) Ta có:

\(R\left(x\right)=x^2+3x\)

\(R\left(x\right)=x\left(x+3\right)\)

\(R\left(x\right)=x\left(x+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)

Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3

b) Các nghiệm của R(x) là 0 và -3 (ở phần a)

\(\dfrac{4}{5}-\dfrac{1}{a}=\dfrac{3}{10}\)

\(\dfrac{1}{a}=\dfrac{4}{5}-\dfrac{3}{10}\)

\(\dfrac{1}{a}=\dfrac{5}{10}\)

\(\dfrac{1}{a}=\dfrac{1}{2}\)

\(a=2\)

abab:ab=aba

abx101:ab=aba

101=aba

=>ab=10