Duc Nguyen
Giới thiệu về bản thân
Điều kiện:
\(\left\{{}\begin{matrix}x+\dfrac{3}{x}=\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\)
mà \(x^2\ge0\forall x\Rightarrow\left\{{}\begin{matrix}x^2+3>0\forall x\\x^2+7>0\forall x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\2\left(x+1\right)>0\Leftrightarrow x+1>0\Leftrightarrow x>-1\end{matrix}\right.\)
\(\Leftrightarrow x>0\)
\(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{\dfrac{x^2+3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\left(\sqrt{\dfrac{x^2+3}{x}}\right)^2=\left[\dfrac{x^2+7}{2\left(x+1\right)}\right]^2\)
\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{\left(x^2+7\right)^2}{\left[2\left(x+1\right)\right]^2}\)
\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{x^4+14x^2+49}{4\left(x+1\right)^2}=\dfrac{x^4+14x^2+49}{4\left(x^2+2x+1\right)}=\dfrac{x^4+14x^2+49}{4x^2+8x+4}\)
\(\Leftrightarrow\dfrac{\left(x^2+3\right)\left(4x^2+8x+4\right)}{x\left(4x^2+8x+4\right)}=\dfrac{x\left(x^4+14x^2+49\right)}{x\left(4x^2+8x+4\right)}\)
\(\Leftrightarrow\left(x^2+3\right)\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)
\(\Leftrightarrow x^2\left(4x^2+8x+4\right)+3\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)
\(\Leftrightarrow4x^4+8x^3+4x^2+12x^2+24x+12=x^5+14x^3+49x\)
\(\Leftrightarrow4x^4+8x^3+16x^2+24x+12=x^5+14x^3+49x\)
\(\Leftrightarrow x^5-4x^4+14x^3-8x^3-16x^2+49x-24x-12=0\)
\(\Leftrightarrow x^5-4x^4+6x^3-16x^2+25x-12=0\)
\(\Leftrightarrow x^5-x^4-3x^4+3x^3+3x^3-3x^2-13x^2+13x+12x-12=0\)
\(\Leftrightarrow x^4\left(x-1\right)-3x^3\left(x-1\right)+3x^2\left(x-1\right)-13x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4-3x^3+3x^2-13x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4-x^3-2x^3+2x^2+x^2-x-12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^3\left(x-1\right)-2x^2\left(x-1\right)+x\left(x-1\right)-12\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^3-2x^2+x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-2x^2+x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2+x^2-3x+4x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x-3\right)+x\left(x-3\right)+4\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x^2+x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\x^2+x+\dfrac{1}{4}+\dfrac{15}{4}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\end{matrix}\right.\)
Có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
\(\Rightarrow x^2+x+4=0\) vô nghiệm
Vậy: \(x\in\left\{1;3\right\}\)
Đặt: Độ dài chiều dài và rộng của mảnh vườn lần lượt là a và b (m; a>b>0)
=> Diện tích mảnh đất đó là ab (m2)
+) Nếu tăng mỗi chiều của mảnh đất đó thêm 4m thì diện tích mảnh đất đó tăng thêm 80m2
=> (a+4)(b+4)=ab+80 (m2)
=> ab+4a+4b+16=ab+80
=>4a+4b+16=80
=>4a+4b=64
=> 4(a+b)=64
=> a+b=16 (1)
+)Nếu giảm chiều rộng 2m và tăng chiều dài thêm 5m thì diện tích mảnh vườn không đổi
=> (a+5)(b-2)=ab(m2)
=>ab-2a+5b-10=ab
=>-2a+5b=10 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=16\Rightarrow2\left(a+b\right)=2a+2b=32\\-2a+5b=10\end{matrix}\right.\)
\(2a+2b-2a+5b=7b=42\)
\(b=6\)
Thay b = 6 vào (1)
=> a + 6 = 16
=> a = 10
Có a>b>0 (do 10>6>0)
=> tmđk: a = 10 và b = 6
=> Độ dài của chiều dài và rộng lần lượt là 10m và 6m
=> Chu vi mảnh vườn đó là: (10+6).2=32(m)
Đ/S: 32m
\(4+3^2+3^3+...+3^x=\left(3^{2024}-1\right):2\)
Đặt: \(S=4+3^2+3^3+...+3^x\)
\(\Rightarrow S=\dfrac{\left(3^{2024}-1\right)}{2}\Rightarrow2S=3^{2024}-1\)
\(S=4+3^2+3^3+...+3^x\)
\(S=1+3+3^2+3^3+...+3^x\)
\(3S=3\left(1+3+3^2+3^3+...+3^x\right)=3+3^2+3^3+3^4+...+3^{x+1}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+3^{x+1}\right)-\left(1+3+3^2+3^3+...+3^x\right)\)
\(2S=3^{x+1}-1\)
\(\Rightarrow3^{x+1}-1=3^{2024}-1\)
\(3^{x+1}=3^{2024}\)
\(x+1=2024\)
\(x=2023\)
Vậy: \(x=2023\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\)
\(=\sqrt{2+2\sqrt{2}+1}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}\right)^2-1^2}}\)
\(=\sqrt{2}+1-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{2-1}}\)
\(=\sqrt{2}+1-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{1}}\)
\(=\sqrt{2}+1-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}+1-\sqrt{2}+1=2\)
\(m^2+n^2=9m+13n-20\)
\(m^2+n^2-9m-13n=-20\)
\(m^2-9m+20,25+n^2-13n+42,25=-20+20,25+42,25\)
\(\left(m-4,5\right)^2+\left(n-6,5\right)^2=42,5\)
Đặt phân số đó là x/y (với y khác 0)
=> x/y = 32/60 và x+y=115
Có x+y=115 => x = 115-y
=> x/y = (115-y)/y=32/60
=>60(115-y)=32y
=>6900-60y=32y
=>6900=32y+60y=92y
=>y=6900/92=75 (tmđk)
=> x=115-y=115-75=40
=>x/y=40/75
Vậy: phân số cần tìm là 40/75
đồng đội
Số học sinh nam là:
600 x 54,5 / 100 = 327 (bạn)
Đ/s...
1,
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy \(A=2^{32}-1\)
2, \(x^2-6x=-9\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(x-3=0\)
\(x=3\)
Vậy \(x=3\)
Ta có:
Ư(84)={1; 2; 3; 4; 6; 7; 12; 14; 28; 42; 84}
Ư(180)={1;2;3;4;5;6;9;10;12;15;18;20;30;36;45;60;90;180}
=> ƯC(84;180)={1;2;3;4;6;12}
hay a ϵ {1;2;3;4;6;12}
mà a>6
=> aϵ{12}