

Chu Thị Quỳnh Phương
Giới thiệu về bản thân



































- Kích thước của hình chữ nhật bên trong: Chiều dài là \(25\) cm và chiều rộng là \(17\) cm.
- Kích thước của khung ảnh lớn: Với chiều rộng viền là \(x\), chiều dài và chiều rộng của khung ảnh sẽ là:
- Chiều dài: \(25 + 2 x\)
- Chiều rộng: \(17 + 2 x\)
- Diện tích của cả khung ảnh:
\(A = \left(\right. 25 + 2 x \left.\right) \left(\right. 17 + 2 x \left.\right)\)
Chúng ta cần phương trình này không vượt quá diện tích tối đa là \(513\) cm²:
\(\left(\right. 25 + 2 x \left.\right) \left(\right. 17 + 2 x \left.\right) = 513\) - Giải phương trình:
\(25 \cdot 17 + 50 x + 34 x + 4 x^{2} = 513\)
\(425 + 84 x + 4 x^{2} = 513\)
\(4 x^{2} + 84 x + 425 - 513 = 0\)
\(4 x^{2} + 84 x - 88 = 0\) - Rút gọn phương trình:
\(x^{2} + 21 x - 22 = 0\) - Giải phương trình bậc hai bằng công thức:
\(x = \frac{- b \pm \sqrt{b^{2} - 4 a c}}{2 a}\)
trong đó \(a = 1\), \(b = 21\), và \(c = - 22\):
\(x = \frac{- 21 \pm \sqrt{21^{2} - 4 \cdot 1 \cdot \left(\right. - 22 \left.\right)}}{2 \cdot 1}\)
\(= \frac{- 21 \pm \sqrt{441 + 88}}{2}\)
\(= \frac{- 21 \pm \sqrt{529}}{2}\)
\(= \frac{- 21 \pm 23}{2}\) - Tính toán hai nghiệm:
- Nghiệm 1:
\(x = \frac{2}{2} = 1\) - Nghiệm 2:
\(x = \frac{- 44}{2} = - 22 \left(\right. \text{kh} \hat{\text{o}} \text{ng}\&\text{nbsp};\text{h}ợ\text{p}\&\text{nbsp};\text{l}ệ\&\text{nbsp};\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{khung}\&\text{nbsp};\text{kh} \hat{\text{o}} \text{ng}\&\text{nbsp};\text{th}ể\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} \&\text{nbsp};độ\&\text{nbsp};\text{r}ộ\text{ng}\&\text{nbsp}; \hat{\text{a}} \text{m} \left.\right)\)
- Nghiệm 1:
Kết luận:
Vậy độ rộng viền khung ảnh tối đa mà bạn Hà có thể làm là \(x = 1\) cm.
a) Tính \(cos \alpha\)
- Xác định hệ số a, b của các đường thẳng:
- Đường thẳng \(\Delta : 3 x + 4 y + 7 = 0\) => \(a_{1} = 3 , b_{1} = 4\)
- Đường thẳng \(\Delta_{1} : 5 x - 12 y + 7 = 0\) => \(a_{2} = 5 , b_{2} = - 12\)
- Sử dụng công thức tính \(cos \) của góc giữa hai đường thẳng:
\(cos \alpha = \frac{a_{1} a_{2} + b_{1} b_{2}}{\sqrt{\left(\right. a_{1}^{2} + b_{1}^{2} \left.\right) \left(\right. a_{2}^{2} + b_{2}^{2} \left.\right)}}\) - Thay số và tính toán:
\(cos \alpha = \frac{3 \cdot 5 + 4 \cdot \left(\right. - 12 \left.\right)}{\sqrt{\left(\right. 3^{2} + 4^{2} \left.\right) \left(\right. 5^{2} + \left(\right. - 12 \left.\right)^{2} \left.\right)}}\)
\(= \frac{15 - 48}{\sqrt{\left(\right. 9 + 16 \left.\right) \left(\right. 25 + 144 \left.\right)}}\)
\(= \frac{- 33}{\sqrt{25 \cdot 169}} = \frac{- 33}{65}\)
Kết quả a:
\(cos \alpha = \frac{- 33}{65}\)
b) Viết phương trình đường thẳng vuông góc với \(\Delta\) và tiếp xúc \(\left(\right. C \left.\right)\)
- Tính hệ số góc của đường thẳng \(\Delta\):
\(\text{H}ệ\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};(\text{m})\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; \Delta = - \frac{a_{1}}{b_{1}} = - \frac{3}{4}\) - Hệ số góc của đường thẳng vuông góc với \(\Delta\):
\(m_{1} = \frac{4}{3}\) - Viết phương trình dạng tổng quát:
\(y - y_{0} = m_{1} \left(\right. x - x_{0} \left.\right)\)
với \(\left(\right. x_{0} , y_{0} \left.\right)\) là điểm tiếp xúc. Điểm tiếp xúc sẽ nằm trên đường tròn, nên ta cần tìm điểm đó. - Tính tọa độ tâm và bán kính:
Tâm \(T \left(\right. 3 , - 2 \left.\right)\) và bán kính \(R = 6\) (vì \(\left(\right. x - 3 \left.\right)^{2} + \left(\right. y + 2 \left.\right)^{2} = 36\)) - Phương trình đường thẳng tiếp xúc tại điểm \(P\) có tọa độ \(\left(\right. x_{0} , y_{0} \left.\right)\) sẽ có dạng:
\(\left(\right. y + 2 \left.\right) = \frac{4}{3} \left(\right. x - 3 \left.\right)\)
Thay \(y\) vào phương trình đường tròn \(\left(\right. C \left.\right)\):
\(\left(\right. x - 3 \left.\right)^{2} + \left(\left(\right. \frac{4}{3} \left(\right. x - 3 \left.\right) - 2 \left.\right)\right)^{2} = 36\) - Giải phương trình để tìm \(x_{0}\) và \(y_{0}\):
Giải phương trình trên sẽ cho ta điểm tiếp xúc \(\left(\right. x_{0} , y_{0} \left.\right)\). - Từ tọa độ \(P \left(\right. x_{0} , y_{0} \left.\right)\), viết phương trình đường thẳng vuông góc với \(\Delta\) và có dạng:
\(y - y_{0} = \frac{4}{3} \left(\right. x - x_{0} \left.\right)\)
a) Xét tam thức bậc hai \(f \left(\right. x \left.\right) = x^{2} + \left(\right. m - 1 \left.\right) x + \left(\right. m + 5 \left.\right)\).
- Tính \(\Delta\):
\(\Delta = \left(\right. m - 1 \left.\right)^{2} - 4 \cdot 1 \cdot \left(\right. m + 5 \left.\right)\)
\(= \left(\right. m - 1 \left.\right)^{2} - 4 \left(\right. m + 5 \left.\right)\)
\(= m^{2} - 2 m + 1 - 4 m - 20\)
\(= m^{2} - 6 m - 19\) - Để \(f \left(\right. x \left.\right) > 0\) với mọi \(x \in \mathbb{R}\), cần \(\Delta \leq 0\):
\(m^{2} - 6 m - 19 \leq 0\) - Giải phương trình \(m^{2} - 6 m - 19 = 0\):
\(m = \frac{6 \pm \sqrt{36 + 76}}{2} = \frac{6 \pm \sqrt{112}}{2} = \frac{6 \pm 4 \sqrt{7}}{2} = 3 \pm 2 \sqrt{7}\) - Từ đó, khoảng nghiệm thỏa mãn là:
\(m \in \left(\right. 3 - 2 \sqrt{7} , 3 + 2 \sqrt{7} \left.\right)\)
b) Giải phương trình:
\(\sqrt{2 x^{2} - 8 x + 4} = x - 2\)
- Bình phương hai bên:
\(2 x^{2} - 8 x + 4 = \left(\right. x - 2 \left.\right)^{2}\)
\(= x^{2} - 4 x + 4\) - Rút gọn:
\(2 x^{2} - 8 x + 4 - x^{2} + 4 x - 4 = 0\)
\(x^{2} - 4 x = 0\) - Nhân tử:
\(x \left(\right. x - 4 \left.\right) = 0\) - Nghiệm:
\(x = 0 \text{ho}ặ\text{c} x = 4\) - Kiểm tra nghiệm:
- Với \(x = 0\): Không thỏa mãn.
- Với \(x = 4\): Thỏa mãn.
Vậy nghiệm là:
\(x = 4\)
A) \(m \in \left(\right. 3 - 2 \sqrt{7} , 3 + 2 \sqrt{7} \left.\right)\)
B) \(x = 4\)
m=0,5kg
v=9,49m/s
a)F=800N
A=36000J
P=240W
b)F=1800N
A=81000J
P=5400W
a)45cm
b)0,8kg
a)3,4
b)0,4
a) \(m \in \left(\right. 3 - 2 \sqrt{7} , 3 + 2 \sqrt{7} \left.\right)\)
b) Nghiệm: \(x = 4\)
a) Tính \(cos \alpha\)
\(cos \alpha = \frac{- 33}{65}\)
b) Phương trình đường thẳng vuông góc với \(\Delta\) và tiếp xúc với \(\left(\right. C \left.\right)\)
\(y - y_{0} = \frac{4}{3} \left(\right. x - x_{0} \left.\right)\)
(Tọa độ \(\left(\right. x_{0} , y_{0} \left.\right)\) được xác định từ phương trình tiếp xúc với đường tròn.)