

Nguyễn Thanh Hải
Giới thiệu về bản thân



































A = 4a(a + b)(a + b + c)(a + c) + (bc)²
= 4 × [a(a + b + c)] × [(a + b)(a + c)] + (bc)²
= 4(a² + ab + ac)(a² + ab + ac + bc) + (bc)²
= 4(a² + ab + ac)² + 4bc(a² + ab + ac) + (bc)²
= [2(a² + ab + ac) + bc]² (đpcm)
\begin{aligned}
A &= 4a(a + b)(a + b + c)(a + c) + (bc)^2 \\
&= 4 \times \bigl[a(a + b + c)\bigr] \times \bigl[(a + b)(a + c)\bigr] + (bc)^2 \\
&= 4(a^2 + ab + ac)(a^2 + ab + ac + bc) + (bc)^2 \\
&= 4(a^2 + ab + ac)^2 + 4bc(a^2 + ab + ac) + (bc)^2 \\
&= \bigl[ 2(a^2 + ab + ac) + bc \bigr]^2 \quad \text{(đpcm)}
\end{aligned}
$$
\begin{aligned}
A &= 4a(a + b)(a + b + c)(a + c) + (bc)^2 \\
&= 4 \times \bigl[a(a + b + c)\bigr] \times \bigl[(a + b)(a + c)\bigr] + (bc)^2 \\
&= 4(a^2 + ab + ac)(a^2 + ab + ac + bc) + (bc)^2 \\
&= 4(a^2 + ab + ac)^2 + 4bc(a^2 + ab + ac) + (bc)^2 \\
&= \bigl[ 2(a^2 + ab + ac) + bc \bigr]^2 \quad \text{(đpcm)}
\end{aligned}
$$
$$
\begin{aligned}
A &= 4a(a + b)(a + b + c)(a + c) + (bc)^2 \\
&= 4 \times \bigl[a(a + b + c)\bigr] \times \bigl[(a + b)(a + c)\bigr] + (bc)^2 \\
&= 4(a^2 + ab + ac)(a^2 + ab + ac + bc) + (bc)^2 \\
&= 4(a^2 + ab + ac)^2 + 4bc(a^2 + ab + ac) + (bc)^2 \\
&= \bigl[ 2(a^2 + ab + ac) + bc \bigr]^2 \quad \text{(đpcm)}
\end{aligned}
$$