Cho tam giác ABC có AB = AC. Trên cạnh AB lấy diểm D, trên cạnh Ac lấy điểm E sao cho AD=AE. Chứng minh:
a) tam giác ABE = tam giác ACD
b) BE = DC
c) góc ABC = góc ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giải bài toán, ta sẽ dùng điều kiện \(\frac{a}{3} = \frac{b}{5} = \frac{c}{4}\).
Gọi \(k\) là giá trị chung của \(\frac{a}{3} = \frac{b}{5} = \frac{c}{4}\). Vậy ta có:
\(a = 3 k , b = 5 k , c = 4 k\)
Thay vào phương trình \(2 a + 3 b + c = 50\):
\(2\cdot\left(\right.3k\left.\right)+3\cdot\left(\right.5k\left.\right)+4k=50\)
Giải phương trình:
\(6 k + 15 k + 4 k = 50\) \(25 k = 50\) \(k = 2\)
Vậy, ta có:
\(a = 3 k = 3 \times 2 = 6\) \(b = 5 k = 5 \times 2 = 10\) \(c = 4 k = 4 \times 2 = 8\)
Vậy ba số \(a , b , c\) là \(6 , 10 , 8\).
like mình nhé
\(\dfrac{4-x}{3}=\dfrac{x-2}{5}\)
\(\left(4-x\right).5=\left(x-2\right).3\)
\(20-5x=3x-6\)
\(5x+3x=20+6\)
\(8x=26\)
\(x=26:8\)
\(x=\dfrac{26}{8}\)
\(x=\dfrac{13}{4}\)
Vậy \(x=\dfrac{13}{4}\)
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
=>EA=ED
=>ΔEAD cân tại E
b: BA=BD
=>B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
=>E nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra BE là đường trung trực của AD
=>BE\(\perp\)AD tại H và H là trung điểm của AD
ΔDHE vuông tại H
=>DE là cạnh huyền
=>DE là cạnh lớn nhất trong ΔDHE
=>DE>HD
\(\widehat{DAM}=\widehat{DAC}+\widehat{MAC}=90^0+\widehat{DAC}>90^0\)
Xét ΔDAM có \(\widehat{DAM}>90^0\)
nên DM là cạnh lớn nhất trong ΔDAM
=>DM>DA
mà DA=2DH
nên DM>2DH
c: Xét ΔADF có
H là trung điểm của AD
HE//DF
DO đó: E là trung điểm của AF
Xét ΔADF có
FH,DE là các đường trung tuyến
FH cắt DE tại K
DO đó: K là trọng tâm của ΔADF
=>KD=2KE
Giải:
Lấy 1993 số khác nhau trong đó mỗi số đều gồm toàn chữ số 1:
Khi chia một số cho 1993 thì có các số dư là:
0; 1; 2;... ;1992
Số số dư có thể là:
(1992 - 0) : 1 + 1 = 1993
Như vậy trong 1993 số khác nhau mà mỗi số gồm toàn chữ số 1 thì nhất định phải có một số có số dư là 0 khi chia cho 1993.
Vậy luôn tồn tại một số gồm toàn chữ số 1 chia hết cho 1993(đpcm)
Gọi số quả trứng của của các loại 1; 2; 3 mà người đó mua được lần lượt là: \(x;y;z\) ( quả, \(x;y;z\in N\)*
Theo bài ra, ta có:
\(x.4000=y.3000=z.2000\)
\(\Rightarrow x.4=y.3=z.2\)
\(\Rightarrow\dfrac{4x}{12}=\dfrac{3y}{12}=\dfrac{2z}{12}\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x+y+z=65\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{3+4+6}=\dfrac{65}{13}=5\)
Do đó:
\(\dfrac{x}{3}=5\) nên \(x=5.3=15\)
\(\dfrac{y}{4}=5\) nên \(y=5.4=20\)
\(\dfrac{z}{6}=5\) nên \(z=5.6=30\)
Vậy số quả trứng của các loại 1; 2; 3 mà người đó mua được lần lượt là:\(15\) quả; \(20\) quả; \(30\) quả.
\(\frac{2}{3}=\frac{4}{6}\left(1\right)\)
\(\frac{2}{4}=\frac{3}{6}\left(2\right)\)
\(\frac{3}{2}=\frac{6}{4}\left(3\right)\)
\(\frac{4}{2}=\frac{6}{3}\left(4\right)\)
Ticks nha
\(a=\left(-\dfrac{1}{5}\right)^{84}=\left(\dfrac{1}{5}\right)^{84}=\left(\dfrac{1}{25}\right)^{42}\)
\(b=\left(-\dfrac{1}{3}\right)^{126}=\left(\dfrac{1}{3}\right)^{126}=\left(\dfrac{1}{27}\right)^{42}\)
Vì 25<27
nên \(\dfrac{1}{25}>\dfrac{1}{27}\)
=>\(\left(\dfrac{1}{25}\right)^{42}>\left(\dfrac{1}{27}\right)^{42}\)
=>a>b
Số lượng giờ làm việc để hoàn thành công việc đó: 8 x 30 = 240 (giờ)
Nếu tăng thêm 10 người thì số lượng công nhân hiện tại là: 30 + 10 = 40 (người)
Số giờ hoàn thành mỗi người cần làm: 240 : 40 = 6 (giờ)
Công việc của mỗi người cần làm giảm bớt được: 8 - 6 = 2 (giờ)
Đáp số: 2 giờ
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: ΔABE=ΔACD
=>BE=DC
c: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)