K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

giả sử căn 2 là số hữu tỉ thì có dạng m/n (m,n tối giản)

nên 2=m^2/n^2

<=>m^2=2n^2
=>m chia hết cho 2 đặt m=2k nên m^2=4k^2

nên n chia hết cho 2 

từ trên ta có m và n cùng chia hết cho 2 
=>mâu thuẫn giả thuyết
tương tự căn 3 căn 5 cũng như vậy

14 tháng 8 2019

Giả sử \(\sqrt{2}\)là số hữu tỉ thì \(\sqrt{2}=\frac{a}{b}\left[\left(a,b\right)=1\right]\)

\(\Rightarrow a^2=2b^2\)(1)\(\Rightarrow a^2⋮2\)

Mà 2 là số nguyên tố nên \(a⋮2\)

Đặt a = 2k.Thay vào (1), ta được: \(4k^2=2b^2\Rightarrow2k^2=b^2\)

\(\Rightarrow b^22⋮\).Mà 2 là số nguyên tố nên \(b⋮2\)

Vậy a và b cùng chia hết cho 2, trái với (a,b) =1

Vậy \(\sqrt{2}\)là số vô tỉ hay \(\sqrt{2}+3\)là số vô tỉ (đpcm)

Vì 3 là số hữu tỉ rồi nên phải cần c/m √2 là số vô tỉ là đc!

Giả sử √2 là số hữu tỉ 
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1) 
√2 = a/b 
<=> 2 = a²/b² 
<=> b² = a²/2 
=> a² chia hết cho 2 
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2) 
=> a = 2k. Thay vào : 
2 = a²/b² 
<=> 2 = (2k)²/b² 
<=> b² = 2k² 
=> b² chia hết cho 2 
=> b chia hết cho 2 (3) 
Từ (2) và (3) => ƯC (a ; b) = 2 
=> Mâu thuẫn (1) 
=> Điều giả sử là sai 
=> √2 là số vô tỉ (đpcm)

4 tháng 2 2018

* Giả sử 5 2  là số hữu tỉ a, nghĩa là: 5 2  = a

Suy ra:  2  = a / 5 hay  2  là số hữu tỉ.

Điều này vô lí vì  2  là số vô tỉ.

Vậy 5 2  là số vô tỉ.

* Giả sử 3 +  2  là số hữu tỉ b, nghĩa là:

3 +  2  = b

Suy ra:  2  = b - 3 hay  2  là số hữu tỉ.

Điều này vô lí vì  2  là số vô tỉ.

Vậy 3 +  2  là số vô tỉ.

15 tháng 3 2020

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

15 tháng 3 2020

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

20 tháng 1 2022

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

20 tháng 1 2022

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

28 tháng 7 2017

cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự 

vì căn 2 là số vô tỉ 

vì cắn 3 là số vô tỉ 

và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ 

16 tháng 8

Dùng phản chứng:Giả sử \(\sqrt5-\sqrt3\) là số hữu tỉ

Khi đó tồn tại 2 số nguyên p,q sao cho \(\sqrt5-\sqrt3=\frac{p}{q}\)

\(\Leftrightarrow\left(\sqrt5-\sqrt3\right)^2=\left(\frac{p}{q}\right)^2\)

\(\Leftrightarrow5-2\sqrt{15}+3=\frac{p^2}{q^2}\)

\(\Leftrightarrow8+2\sqrt{15}=\frac{p^2}{q^2}\) \(\Leftrightarrow-2\sqrt{15}=\frac{p^2}{q^2}-8\)

\(\sqrt{15}=\frac{8q^2-p^2}{2q^2}\) (Vô lý)

\(\sqrt{15}\) là số vô tỉ (do 15 không phải số chính phương ) và \(\frac{8q^2-p^2}{2q^2}\) là số hữu tỉ

=> \(\sqrt5-\sqrt3\) là số vô tỉ (Theo phản chứng)