Cho A =1 +1/17+1/17^2+1/17^3+...+1/17^20. CMR A=(17^2-1)/ (16.13^20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?

\(A=\frac{17^{20}+2}{17^{20}-1}=\frac{17^{20}-1+3}{17^{20}-1}=1+\frac{3}{17^{20}-1}\)
\(B=\frac{17^{20}-2}{17^{20}-5}=\frac{17^{20}-5+3}{17^{20}-5}=1+\frac{3}{17^{20}-5}\)
Vì \(17^{20}-1>17^{20}-5\)
\(=>\frac{3}{17^{20}-1}<\frac{3}{17^{20}-5}\)
\(=>1+\frac{3}{17^{20}-1}<1+\frac{3}{17^{20}-5}\)
=>A<B

a) Không thể vì: \(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}=1+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>1\)
b) Ta có: \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
CM: \(\dfrac{a}{b}=\dfrac{a\cdot\left(b-m\right)}{b\cdot\left(b-m\right)}=\dfrac{ab-am}{b^2-bm}\left(1\right)\\ \dfrac{a-m}{b-m}=\dfrac{\left(a-m\right)\cdot b}{\left(b-m\right)\cdot b}=\dfrac{ab-am}{b^2-bm}\left(2\right)\)
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab-am>ab-bm\left(3\right)\)
Từ (1), (2), (3) ta có \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
Vậy
\(B=\dfrac{17^{19}-1}{17^{20}-1}>\dfrac{17^{19}-1-16}{17^{20}-1-16}=\dfrac{17^{19}-17}{17^{20}-17}=\dfrac{17\cdot\left(17^{18}-1\right)}{17\cdot\left(17^{19}-1\right)}=\dfrac{17^{18}-1}{17^{19}-1}=A\)
Vậy B > A

d) Ta có: \(32\%-0.25:x=-\dfrac{17}{5}\)
\(\Leftrightarrow0.25:x=\dfrac{8}{25}+\dfrac{17}{5}=\dfrac{93}{25}\)
hay \(x=\dfrac{25}{372}\)
Vậy: \(x=\dfrac{25}{372}\)
e) Ta có: \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{2}{5};-\dfrac{4}{5}\right\}\)
f) Ta có: \(-\dfrac{32}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)
\(\Leftrightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-8}{27}\)
\(\Leftrightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)
\(\Leftrightarrow3x=\dfrac{1}{9}\)
hay \(x=\dfrac{1}{27}\)
g) Ta có: \(60\%\cdot x+0.4x+x:3=2\)
\(\Leftrightarrow\dfrac{4}{3}x=2\)
hay \(x=\dfrac{3}{2}\)
Vậy: \(x=\dfrac{3}{2}\)
h) PT \(\Leftrightarrow\left|\dfrac{20}{9}-x\right|=\dfrac{2}{9}\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{20}{9}-x=\dfrac{2}{9}\\x-\dfrac{20}{9}=\dfrac{2}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{22}{9}\end{matrix}\right.\)
Vậy ...
i) PT \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}x=\dfrac{16}{5}\) \(\Leftrightarrow\dfrac{2}{5}x=\dfrac{8}{5}\) \(\Leftrightarrow x=4\)
Vậy ...

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)
\(\Rightarrow A< B\)
\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)
\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)
\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)

\(\frac{M}{17}=\frac{17^{20}+1}{17^{20}+17}=\frac{17^{20}+17-16}{17^{20}+17}=1-\frac{16}{17^{20}+17}\)
\(\frac{N}{17}=\frac{17^{17}+1}{17^{17}+17}=\frac{17^{17}+17-16}{17^{17}+17}=1-\frac{16}{17^{17}+17}\)
Ta có: \(17^{20}+17>17^{17}+17\)
=>\(\frac{16}{17^{20}+17}<\frac{16}{17^{17}+17}\)
=>\(-\frac{16}{17^{20}+17}>-\frac{16}{17^{17}+17}\)
=>\(-\frac{16}{17^{20}+17}+1>-\frac{16}{17^{17}+17}+1\)
=>\(\frac{M}{17}>\frac{N}{17}\)
=>M>N

a) Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}< \frac{1}{2}\)
Vậy A<\(\frac{1}{2}\).
b) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
Vậy \(B< 1\).
Ta có:
\(A=1+\frac{1}{17}+\frac{1}{17^{2}}+\ldots+\frac{1}{17^{20}}\)Đây là cấp số nhân với:
\(A = \frac{1 \left(\right. 1 - \left(\left(\right. \frac{1}{17} \left.\right)\right)^{21} \left.\right)}{1 - \frac{1}{17}} = \frac{1 - \frac{1}{17^{21}}}{\frac{16}{17}} = \frac{17 \left(\right. 1 - \frac{1}{17^{21}} \left.\right)}{16}\) \(A = \frac{17^{21} - 1}{16 \cdot 17^{20}}\)Số hạng đầu \(a = 1\), công bội \(r = \frac{1}{17}\), số số hạng \(n = 21\)
Ta có:
\(17^{21}-1=\left(\right.17^2-1\left.\right)\left(\right.17^{19}+17^{17}+\ldots+1\left.\right)\cdot13^{20}\left(\right.*\left.\right)\)⇒
\(A=\frac{\left(\right. 17^{2} - 1 \left.\right)}{16 \cdot13^{20}}(điềuphải\chứng\min h)\)Cơm nước gì chưa người đẹp🍚🍚🍚🍚🍚🍚🍚🍚🍚🍙🍙🍙🍺🍺🍺🍺🍺🍺🍺🍭🥮☄️⏰️⏰️⏰️⏰️✈️✈️✈️✈️✈️