K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 giờ trước (10:18)

Ta có:

\(A=1+\frac{1}{17}+\frac{1}{17^{2}}+\ldots+\frac{1}{17^{20}}\)

Đây là cấp số nhân với:
Số hạng đầu \(a = 1\), công bội \(r = \frac{1}{17}\), số số hạng \(n = 21\)

\(A = \frac{1 \left(\right. 1 - \left(\left(\right. \frac{1}{17} \left.\right)\right)^{21} \left.\right)}{1 - \frac{1}{17}} = \frac{1 - \frac{1}{17^{21}}}{\frac{16}{17}} = \frac{17 \left(\right. 1 - \frac{1}{17^{21}} \left.\right)}{16}\) \(A = \frac{17^{21} - 1}{16 \cdot 17^{20}}\)

Ta có:

\(17^{21}-1=\left(\right.17^2-1\left.\right)\left(\right.17^{19}+17^{17}+\ldots+1\left.\right)\cdot13^{20}\left(\right.*\left.\right)\)

\(A=\frac{\left(\right. 17^{2} - 1 \left.\right)}{16 \cdot13^{20}}(điềuphải\chứng\min h)\)
18 giờ trước (10:27)

Cơm nước gì chưa người đẹp🍚🍚🍚🍚🍚🍚🍚🍚🍚🍙🍙🍙🍺🍺🍺🍺🍺🍺🍺🍭🥮☄️⏰️⏰️⏰️⏰️✈️✈️✈️✈️✈️

Giải:

a) A=1718+1/1719+1

17A=1719+17/1719+1

17A=1719+1+16/1719+1

17A=1+16/1719+1

Tương tự:

B=1717+1/1718+1

17B=1718+17/1718+1

17B=1718+1+16/1718+1

17B=1+16/1718+1

Vì 16/1719+1<16/1718+1 nên 17A<17B

⇒A<B

b) A=108-2/108+2

    A=108+2-4/108+2

    A=1+-4/108+2

Tương tự:

B=108/108+4

B=108+4-4/108+1

B=1+-4/108+1

Vì -4/108+2>-4/108+1 nên A>B

c)A=2010+1/2010-1

   A=2010-1+2/2010-1

   A=1+2/2010-1

Tương tự:

B=2010-1/2010-3

B=2010-3+2/2010-3

B=1+2/2010-3

Vì 2/2010-3>2/2010-1 nên B>A

⇒A<B

Chúc bạn học tốt!

12 tháng 3 2023

17A=1719+1+16/1719+1

17A=1+16/1719+1

phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?

 

3 tháng 9 2015

\(A=\frac{17^{20}+2}{17^{20}-1}=\frac{17^{20}-1+3}{17^{20}-1}=1+\frac{3}{17^{20}-1}\)

\(B=\frac{17^{20}-2}{17^{20}-5}=\frac{17^{20}-5+3}{17^{20}-5}=1+\frac{3}{17^{20}-5}\)

Vì \(17^{20}-1>17^{20}-5\)

\(=>\frac{3}{17^{20}-1}<\frac{3}{17^{20}-5}\)

\(=>1+\frac{3}{17^{20}-1}<1+\frac{3}{17^{20}-5}\)

=>A<B

23 tháng 4 2017

a) Không thể vì: \(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}=1+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>1\)

b) Ta có: \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)

CM: \(\dfrac{a}{b}=\dfrac{a\cdot\left(b-m\right)}{b\cdot\left(b-m\right)}=\dfrac{ab-am}{b^2-bm}\left(1\right)\\ \dfrac{a-m}{b-m}=\dfrac{\left(a-m\right)\cdot b}{\left(b-m\right)\cdot b}=\dfrac{ab-am}{b^2-bm}\left(2\right)\)

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab-am>ab-bm\left(3\right)\)

Từ (1), (2), (3) ta có \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)

Vậy

\(B=\dfrac{17^{19}-1}{17^{20}-1}>\dfrac{17^{19}-1-16}{17^{20}-1-16}=\dfrac{17^{19}-17}{17^{20}-17}=\dfrac{17\cdot\left(17^{18}-1\right)}{17\cdot\left(17^{19}-1\right)}=\dfrac{17^{18}-1}{17^{19}-1}=A\)

Vậy B > A

24 tháng 4 2017

sory ở phần a)mình thiếu 1/22 đằng sau 1/12

d) Ta có: \(32\%-0.25:x=-\dfrac{17}{5}\)

\(\Leftrightarrow0.25:x=\dfrac{8}{25}+\dfrac{17}{5}=\dfrac{93}{25}\)

hay \(x=\dfrac{25}{372}\)

Vậy: \(x=\dfrac{25}{372}\)

e) Ta có: \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)

\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{2}{5};-\dfrac{4}{5}\right\}\)

f) Ta có: \(-\dfrac{32}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)

\(\Leftrightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-8}{27}\)

\(\Leftrightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)

\(\Leftrightarrow3x=\dfrac{1}{9}\)

hay \(x=\dfrac{1}{27}\)

g) Ta có: \(60\%\cdot x+0.4x+x:3=2\)

\(\Leftrightarrow\dfrac{4}{3}x=2\)

hay \(x=\dfrac{3}{2}\)

Vậy: \(x=\dfrac{3}{2}\)

h) PT \(\Leftrightarrow\left|\dfrac{20}{9}-x\right|=\dfrac{2}{9}\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{20}{9}-x=\dfrac{2}{9}\\x-\dfrac{20}{9}=\dfrac{2}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{22}{9}\end{matrix}\right.\)

  Vậy ...

i) PT \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}x=\dfrac{16}{5}\) \(\Leftrightarrow\dfrac{2}{5}x=\dfrac{8}{5}\) \(\Leftrightarrow x=4\)

  Vậy ...

 

27 tháng 5 2019

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)

\(\Rightarrow A< B\)

27 tháng 5 2019

\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)

\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)

\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)

\(\frac{M}{17}=\frac{17^{20}+1}{17^{20}+17}=\frac{17^{20}+17-16}{17^{20}+17}=1-\frac{16}{17^{20}+17}\)

\(\frac{N}{17}=\frac{17^{17}+1}{17^{17}+17}=\frac{17^{17}+17-16}{17^{17}+17}=1-\frac{16}{17^{17}+17}\)

Ta có: \(17^{20}+17>17^{17}+17\)

=>\(\frac{16}{17^{20}+17}<\frac{16}{17^{17}+17}\)

=>\(-\frac{16}{17^{20}+17}>-\frac{16}{17^{17}+17}\)

=>\(-\frac{16}{17^{20}+17}+1>-\frac{16}{17^{17}+17}+1\)

=>\(\frac{M}{17}>\frac{N}{17}\)

=>M>N

5 tháng 3 2020

a) Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}< \frac{1}{2}\)

Vậy A<\(\frac{1}{2}\).

b) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                  \(\frac{1}{3^2}< \frac{1}{2.3}\)

                  \(\frac{1}{4^2}< \frac{1}{3.4}\)

                    ...

                   \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

Vậy \(B< 1\).