tìm x
(x-4) :(x-7) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(3x\left(x-2020\right)-x+2020=0\)
\(3x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\left(3x-1\right)\left(x-2020\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)
\(b,4-9x^2=0\)
\(2^2-\left(3x\right)^2=0\)
\(\left(2-3x\right)\left(2+3x\right)=0\)
\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(x^2-x+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(d,x\left(x-3\right)+\left(x-3\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)
\(e,9x\left(x-7\right)-x+7=0\)
\(9x\left(x-7\right)-\left(x-7\right)=0\)
\(\left(9x-1\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)
a) 3x(x - 2020) - x + 2020 = 0
<=> 3x(x - 2020) - (x - 2020) = 0
<=> (3x - 1)(x - 2020) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)
Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)
b) \(4-9x^2=0\)
<=> \(\left(2-3x\right)\left(2+3x\right)=0\)
<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình
c) \(x^2-x+\frac{1}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x-\frac{1}{2}=0\)
<=> \(x=\frac{1}{2}\)
d) x(x - 3) + (x - 3) = 0
<=> (x + 1)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình
e) 9x(x - 7) - x + 7 = 0
<=> (9x - 1)(x - 7) = 0
<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình
a) \(\left(x-4\right)^2-\left(x-4\right)=0\)
\(\left(x-4\right)\left(x-4-1\right)=0\)
\(\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(5x^2\left(x-7\right)+7\left(x-7\right)=0\)
\(\left(x-7\right)\left(5x^2+7\right)=0\)
\(\left[{}\begin{matrix}x-7=0\\5x^2+7=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x^2=\dfrac{-7}{5}\end{matrix}\right.\)
\(x=7\)
c) \(x^2\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-1\right)=0\)
\(\left[{}\begin{matrix}x=3\\x=\pm1\end{matrix}\right.\)
a) (x - 4)^2=(x - 4)
(x - 4) (x -4)=(x -4 )
(x - 4) (x - 4)-(x - 4)=0
(x-4) (x-4-1)=0
(x-4) (x-5)=0
TH1:x-4=0 TH2:x-5=0
x=4 x=5
a)
\(\left(x-2\right)\left(x+7\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)
=> -7 ≤ x ≤ 2
b) Em làm tương tự câu a nhé
c) \(\left(3x+1\right)\left(x-4\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)
d) \(\left(x-1\right)\left(2x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)
17-x+/x-4/=0
/x-4/=x-17
trường hợp 1: x-4=x-17
0x=-13(vô lí không có x thỏa mãn)
trường hợp 2:x-4=17-x
2x=21
x=10,5
vậy không có giá trị nguyên nào của x
b,/x-7/+x-7=0
/x-7/=7-x
trường hợp 1: x-7=7-x
2x=14
x=7
trường hợp 2: x-7=x-7
0x=0 với mọi x là các số nguyên
vậy x thuộc Z
**** cho mk nha
Đúng rồi đó!Nhưng "vậy...." ở câu a nên nói là x thuộc rỗng hay hơn còn ngắn hơn nữa chứ
(\(x-4):\left(x-7\right)=0\left(x\right.\) ≠ 7)
\(x-4=0\)
\(x\) = 4 ≠ 7(tm)
Vậy \(x=4\)
4;8