helpppppppppppppp meeeeeeeeeeeeee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)
\(=4x^2+4x-2xy-2y+x^2+2x+1+4x^2-4xy-y^2\)
\(=9x^2+6x-6xy-2y-y^2+1\)
\(b,\)
\(\dfrac{2x^2+3x-2}{2x-1}=\dfrac{\left(2x^2-x\right)+\left(4x-2\right)}{2x-1}\)
\(=\dfrac{x\left(2x-1\right)+2\left(2x-1\right)}{2x-1}\)
\(=\dfrac{\left(2x-1\right)\left(x+2\right)}{2x-1}\)\(=x+2\)
Thay x = 2 ; y = -1 ta được
\(A=4-3\left(-1\right)+4.4=4+3+16=23\)
ĐKXĐ:\(x\ne-1,x\ne-2\)
\(\dfrac{\left(x+2\right)\left(2x-1\right)-x-2}{x^2+3x+2}=0\\ \Rightarrow2x^2+4x-x-2-x-2=0\\ \Leftrightarrow2x^2+2x-4=0\\ \Leftrightarrow x^2+x-2=0\\ \Leftrightarrow\left(x+2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{1\right\}\)
Chọn D
Lời giải:
\(B=\frac{2x+\sqrt{x}-4}{(\sqrt{x}+1)(\sqrt{x}-2)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}+1)(\sqrt{x}-2)}+\frac{\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}-2)}\)
\(=\frac{2x+\sqrt{x}-4-(x-4)+\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}-2)}=\frac{x+2\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}-2)}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(P=AB=\frac{3\sqrt{x}-4}{\sqrt{x}+1}.\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{3\sqrt{x}-4}{\sqrt{x}-2}\)
\(P\geq 2\Leftrightarrow \frac{3\sqrt{x}-4}{\sqrt{x}-2}\geq 2\)
\(\Leftrightarrow \frac{3\sqrt{x}-4}{\sqrt{x}-2}-2\geq 0\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}-2}\geq 0\)
\(\Leftrightarrow \sqrt{x}-2>0\Leftrightarrow x>4\)
Kết hợp với ĐKXĐ suy ra $x>4$
Bài 2:
a: \(P=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)\)
\(=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)
\(=14x^2+12x+9-5x^2+20=9x^2+12x+29\)
b: Thay x=-2 vào P, ta được:
\(P=9\cdot\left(-2\right)^2+12\cdot\left(-2\right)+29=9\cdot4-24+29=36-24+29\)
=12+29
=41
c: \(P=9x^2+12x+29\)
\(=9x^2+12x+4+25\)
\(=\left(3x+2\right)^2+25\ge25>0\forall x\)
=>P luôn dương với mọi x
Bài 1:
a: (x-4)(x+4)-(5-x)(x+1)
=(x-4)(x+4)+(x-5)(x+1)
\(=x^2-16+x^2+x-5x-5\)
\(=2x^2-4x-21\)
b: \(\left(5x^4y^3+\frac12x^3y^4-xy^6\right):\frac56xy^2\)
\(=5x^4y^3:\frac56xy^2+\frac12x^3y^4:\frac56xy^2-xy^6:\frac56xy^2\)
\(=6x^3y+\frac35x^2y^2-\frac65y^4\)