(x^2 - 2x + 4)(x^4 - 2x^2 + 8) = 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(x^2-2x+4\)).(\(x^4\) - 2\(x^2\) + 8) = 21
[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] = 21
[(\(x-1)^2+3]\).[(\(x^2-1)^2+7]\) = 21
Vì (\(x-1)^2\) ≥ 0 ∀ \(x\); (\(x^2-1\))\(^2\) ≥ 0 \(\) ∀ \(x\) nên:
(\(x-1)^2+3\) ≥ 3; (\(x^2-1)^2+7\) ≥ 7 ∀ \(x\)
[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] ≥ 3 x 7 = 21
Dấu bằng xảy ra khi \(\begin{cases}x-1=0\\ x^2-1=0\end{cases}\)
⇒ \(x\) = 1
a,\(\left|9+x\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}9+x=2x\\9x+x=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9=x\\9=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
Vậy...
Trường hợp 2 chưa chắc chắn lắm!!!
a) \(\left|9+x\right|=2x\)
Xét trường hợp 1:
\(9+x=2x\)
\(\Leftrightarrow9+x-2x=0\)
\(\Leftrightarrow9-x=0\)
\(\Leftrightarrow x=9\)
Xét trường hợp 2:
\(9+x=-2x\)
\(\Leftrightarrow9+x-\left(-2x\right)=0\)
\(\Leftrightarrow9+x+2x=0\)
\(\Leftrightarrow9+3x=0\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-9:3\)
\(\Leftrightarrow x=-3\)
Vậy x=9 hoặc x=-3
b) \(\left|x+6\right|-9=2x\)
\(\Leftrightarrow\left|x+6\right|=2x+9\)
Xét trường hợp 1:
\(x+6=2x+9\)
\(\Leftrightarrow x+6-\left(2x+9\right)=0\)
\(\Leftrightarrow x+6-2x-9=0\)
\(\Leftrightarrow-3-x=0\)
\(\Leftrightarrow x=-3\)
Xét trường hợp 2:
\(x+6=-\left(2x+9\right)\)
\(\Leftrightarrow x+6-\left[-\left(2x+9\right)\right]=0\)
\(\Leftrightarrow x+6+\left(2x+9\right)=0\)
\(\Leftrightarrow x+6+2x+9=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-15:3\)
\(\Leftrightarrow x=-5\)
Vậy x=-3 hoặc x=-5
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
a.x2+5x+4
=>x2+4x+x+4
=>x(x+4)+x+4
=>(x+4)(x+1)
b. x2-7x=6
=>x2-x-6x=6
=>x(x-1)-6(x-1)
=>(x-1)(x-6)
c.x2-6x+8
=>x2-2x-4x+8
=>x(x-2)-4(x-2)
=>(x-2)(x-4)
d.x2-10x+21
=>x2-3x-7x+21
=>x(x-3)-7(x-3)
=>(x-3)(x-7)
e.Bạn xem lại í e đi xem có đúng đề không?
g.x2+2x-15
=>x2+5x-3x-15
=>x(x+5)-3(x+5)
=>(x-5)(x-3)
h.x2-3x-28
=>x2+4x-7x-28
=>x(x+4)-7(x+4)
=>(x+4)(x-7)
Nhớ tick cho mình nhé
1, \(x^2+5x+4\)
\(=x^2+x+4x+4\)
\(=x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right).\left(x+4\right)\)
2, \(x^2-7x+6\)
\(=x^2-x-6x+6\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x+1\right)\left(x-6\right)\)
3, \(x^2-6x+8\)
\(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
4, \(x^2-10x+21\)
\(=x^2-3x-7x+21\)
\(=x\left(x-3\right)-7\left(x-3\right)\)
\(=\left(x-3\right)\left(x-7\right)\)
5, \(x^2-2x+8\)
\(=x^2+2x-4x+8\)
\(=x\left(x+2\right)-4\left(x-2\right)\)
\(=x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
6, \(x^2+2x-15\)
\(=x^2+5x-3x-15\)
\(=x\left(x+5\right)-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x-3\right)\)
7, \(x^2-3x-28\)
\(=x^2+4x-7x-28\)
\(=x\left(x+4\right)-7\left(x+4\right)\)
\(=\left(x+4\right)\left(x-7\right)\)
Ta có:
\(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{4^x\cdot\left(4^2+4+1\right)}{21}=\frac{4^x\cdot21}{21}=4^x\)
\(\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{31}=\frac{9^x\cdot\left(1+3+3^2\right)}{31}=\frac{9^x\cdot13}{31}\)
Xét \(4^x=\frac{9^x\cdot13}{31}\)
=> \(\frac{4^x}{9^x}=\frac{13}{31}\)
Vì \(\hept{\begin{cases}\left(4;9\right)=1\\13\notin B\left(4\right)\\31\notin B\left(9\right)\end{cases}\Rightarrow x\in\varnothing}\)
Vậy x không tồn tại
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a) | 5/4x -7/2| - | 5/8x + 3/5| = 0
|5/4x - 7/2| = | 5/8x + 3/5|
TH1: 5/4x - 7/2 = 5/8x + 3/5
=> 5/4x - 5/8x = 3/5 +7/2
5/8x = 41/10
x = 41/10:5/8
x = 164/25
TH2: 5/4x - 7/2 = -5/8x - 3/5
=> 5/4x + 5/8x = -3/5 +7/2
15/8x = 29/10
x = 29/10 : 15/8
x = 116/75
KL: x = 164/25 hoặc x = 116/75
các bài cn lại b lm tương tự nha! h lm dài lắm!
(\(x^2-2x+4\)).(\(x^4\) - 2\(x^2\) + 8) = 21
[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] = 21
[(\(x-1)^2+3]\).[(\(x^2-1)^2+7]\) = 21
Vì (\(x-1)^2\) ≥ 0 ∀ \(x\); (\(x^2-1\))\(^2\) ≥ 0 \(\) ∀ \(x\) nên:
(\(x-1)^2+3\) ≥ 3; (\(x^2-1)^2+7\) ≥ 7 ∀ \(x\)
[(\(x^2-2x+1\)) + 3].[(\(x^4\) - 2\(x^2\) + 1) + 7] ≥ 3 x 7 = 21
Dấu bằng xảy ra khi \(\begin{cases}x-1=0\\ x^2-1=0\end{cases}\)
⇒ \(x\) = 1
Vậy \(x=1\)