\(-2.\sqrt{x}+3<0\)
\(\frac{\sqrt{2x+4}}{2}\le3\)
tìm x ko âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
a, đổi dấu ở phân số cuối để mẫu thành x-4
rồi sau quy đồng mẫu chung là x-4
bn sẽ rút gọn được
b, theo câu a ta có P = \(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x-2}\right)\left(\sqrt{x+2}\right)}\)
2 trường hợp
th1 tử và mẫu cùng dương
th2
tử và mẫu cùng âm
c, thay x= 4 vào biểu thức đã rút gọn ở câu a
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)
\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)
\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)
Đặt \(t = \sqrt{x}\).
Khi đó \(t \geq 0\) và \(x = t^{2}\)
ta có
\({-2t+3<0,\frac{\sqrt{2 t^{2} + 4}}{2}\leq3}\)
Từ \(- 2 t + 3 < 0\) suy ra \(t>\frac{3}{2}\)
Từ \(\frac{\sqrt{2 t^{2} + 4}}{2} \leq 3\) suy ra \(\sqrt{2 t^{2} + 4} \leq 6\) Vì vế trái không âm bình phương được nên
\(2 t^{2} + 4 \leq 36 \Rightarrow t^{2} \leq 16 \Rightarrow - 4 \leq t \leq 4.\)
\(t \geq 0\) → \(0\leq t\leq4\)
\(t > \frac{3}{2}\) và \(0 \leq t \leq 4\) ⇒ \(t \in \left(\right. \frac{3}{2} , 4 \left]\right.\)
\(x = t^{2}\) nên
\(x\in\left(\right.\left(\right.\frac{3}{2}\left.\right)^2,\textrm{ }4^2\left]\right.=\left(\right.\frac{9}{4},\textrm{ }16\left]\right.\)
Vậy
\(\textrm{ }x\in\left(\right.\frac{9}{4},\textrm{ }16\left]\right.\textrm{ }\).
a:
ĐKXĐ: x>=0
\(-2\sqrt{x}+3<0\)
=>\(-2\sqrt{x}<-3\)
=>\(\sqrt{x}>\frac32\)
=>\(x>\frac94\)
b:
ĐKXĐ: x>=0
\(\frac{\sqrt{2x+4}}{2}\le3\)
=>\(\sqrt{2x+4}\le6\)
=>2x+4<=36
=>2x<=32
=>x<=16
Kết hợp ĐKXĐ, ta được: 0<=x<=16