mọi ng ơi giúp mình câu này với
C= xy+x^2y^2+x^3y^3+.....+x^10y^10 tại x=-1,y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1, y=-1, ta có:
B= (-1).1+(-1)2.12+...(-1)9.19+(-1)10.110
= (-1).1+1.1+...+(-1).1+1.1
= -1 + 1 +...+ (-1) + 1
= (-1+1)+...+(-1+1)
= 0+0+...+0=0
a.A=xy+x2y2+x3y3...+x100y100
-1.-1+-12.-12+-13.-13+....+-1100-1100
=1+1+-1+....+1
=1+0+0+...+0+1
=1+1=2
b.
B=xyz=x2y2z2+x3y3z3+....+x10y10z10
thay x=-1;y=-1;z=-1
B=(-1).(-1).(-1)=(-1)2.(-1)2.(-1)2+(-1)3.(-1)3.(-1)3+....+(-1)10.(-1)10.(-1)10
B=-1=1+(-1)+...+1
B=-1=0+...+0
B=0
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)
\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)
\(=x^2y\sqrt{y}\)
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
Ta có:
\(C = x y + x^{2} y^{2} + x^{3} y^{3} + . . . + x^{10} y^{10}\)
Thay \(y = 1\):
\(C = x + x^{2} + x^{3} + . . . + x^{10}\)
Thay \(x = - 1\):
\(C = \left(\right. - 1 \left.\right) + \left(\right. - 1 \left.\right)^{2} + \left(\right. - 1 \left.\right)^{3} + . . . + \left(\right. - 1 \left.\right)^{10}\)
Tức là:
C=-1+1-1+1-1+1-1+1-1+1 \(\)
Cứ hai số liền nhau: \(\left(\right. - 1 + 1 \left.\right) = 0\).
Có 5 cặp như thế ⇒ tổng bằng 0
đáp số C = 0
x=-1;y=1
=>\(xy=\left(-1\right)\cdot1=-1;\left(xy\right)^2=\left(-1\right)^2=1;\left(xy\right)^3=\left(-1\right)^3;\ldots;\left(xy\right)^{10}=\left(-1\right)^{10}\)
Ta có: \(C=xy+x^2y^2+x^3y^3+\cdots+x^{10}y^{10}\)
\(=\left(xy\right)+\left(xy\right)^2+\left(xy\right)^3+\cdots+\left(xy\right)^{10}\)
\(=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\cdots+\left(-1\right)^{10}\)
=-1+1+(-1)+1+(-1)+1+(-1)+1+(-1)+1
=0