chứng minh M =5^(n+2)-2^(n+2)+5^(n+1)-2^n coa chư số tận cùng bằng 0 với n thuộc N , n>=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300

Ta chỉ cần tách các tổng thành tích thôi em nhé :)
a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.
b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.

a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0
b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)
= 25 (3\(^n\)+2\(^n\)) chia hết cho 25
a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0
=>đpcm
b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)
=25.3n+25.2n=25(3n+2n) chia hết cho 25
=>đpcm

Nếu n tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
mk đánh nhầm
a) Xét hiệu 6n - n = 5n chia hết cho 10 (Do n chẵn) nên 6n và n có cùng chữ số tận cùng.
b) Xét n tận cùng 1, 3, 7, 9 ta thấy n4 đều tận cùng là 1.
Xét n tận cùng 2, 4, 6, 8 ta thấy n4 đều tận cùng là 6.
c) Tương tự
(Vì mấy bài này của lớp 6 nên mình không thể dùng cách ptđttnt được)

với n > 1,ta có:
M=3n+2-2n+2+3n-2n
=3n+2+3n-(2n+2+2n)
=3n(32+1)-2n(22+1)
=3n.10-3n.5
=3n.10-2n-1.10=(3n-2n-1).10 chia hết cho 10
=>M tận cùng = 0

Ta lun có 5^2^n tận cùng là 5 với mọi n^N và n >1
Do vậy 5^2^n+2=A5+2=A7. Vậy 5^2^n+2 tận cùng là 7
Ta có: \(M=5^{n+2}-5^{n+1}-2^{n+2}-2^{n}\)
\(=5^{n+1}\left(5-1\right)-2^{n}\left(2^2+1\right)\)
\(=5^{n}\cdot5\cdot4-2^{n}\cdot5=5^{n}\cdot20-2^{n-1}\cdot10=10\left(5^{n}\cdot4-2^{n-1}\right)\) ⋮10
=>M luôn có chữ số tận cùng bằng 0