a = 1/2 + 1/4 + 1/8 + ... +1 / 2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt A = 1 + 2 + 3 + 4 + ... + 2023
Tổng có 2023 - 1 + 1 số hạng
A = (2023 + 1) × 2023 : 2
= 2047276
-----------------------
Đặt B = 20 + 21 + 22 + ... + 2024
Tổng có: 2024 - 20 + 1 = 2005 số hạng
B = (2024 + 20) × 2005 : 2
= 2049110
------------------------
Đặt C = 2 + 4 + 6 + ... + 2024
Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng
C = (2024 + 2) × 1012 : 2
= 1025156
------------------------
Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192
2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384
2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)
= 16384 - 1
= 16383
Vậy D = 16383
\(a,A=1+2+3+4+5..+2023\)
Số số hạng:
\(\left(2023-1\right):1+1=2023\)
Tổng :
\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)
\(b,20+21+22+..+2024\)
Số số hạng:
\(\left(2024-20\right):1+1=2005\)
Tổng:
\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)
\(c,2+4+6+..+2024\)
Số số hạng:
\(\left(2024-2\right):2+1=1012\)
Tổng:
\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)

\(D=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\) (sửa đề)
\(\dfrac{1}{2}\cdot D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\)
\(D-\dfrac{1}{2}D=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\right)\)
\(\dfrac{1}{2}D=1-\dfrac{1}{4096}\)
\(\dfrac{1}{2}D=\dfrac{4095}{4096}\)
\(\Rightarrow D=\dfrac{4095}{4096}:\dfrac{1}{2}=\dfrac{4095}{2048}\)
Vậy \(D=\dfrac{4095}{2048}\)

=-1-(1/2+1/2^2+1/2^3+.....+1/2^10)
đặt A=(1/2+1/2^2+1/2^3+.....+1/2^10)
2A=2(1/2+1/2^2+1/2^3+.....+1/2^10)=1+1/2+...+1/2^9
A=(1+1/2+...+1/2^9)-(1/2+...+1/2^10)
A=1-1/2^10
=-1-1-1/2^10=......tự làm nha
Đề chắc sai e ạ, a sửa luôn :
\(A=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(2A=1-\frac{1}{2}-...-\frac{1}{2^9}\)
\(2A-A=\left(1-\frac{1}{2}-...-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2}-...-\frac{1}{2^9}-\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(A=1-\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2^{10}}\)
\(A=\frac{1}{2^{10}}\)



\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)
Ta có :
\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)
\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)
\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)
\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)
\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)

S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
Sửa đề: \(a=\frac12+\frac14+\frac18+\cdots+\frac{1}{1024}\)
=>\(2a=1+\frac12+\frac14+\cdots+\frac{1}{512}\)
=>\(2a-a=1+\frac12+\frac14+\cdots+\frac{1}{512}-\frac12-\frac14-\cdots-\frac{1}{1024}\)
=>\(a=1-\frac{1}{1024}=\frac{1023}{1024}\)