Q=(2x+y)^2 -2.(2x+y)-8
TÌm GTNN của Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2Q=2x^2+2xy+2y^2-6x-6y+3998$
$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$
$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$
$\Rightarrow Q\geq 1996$
Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$
------------------
$R=(x^2+2xy+y^2)+x^2-2x+2y+15$
$=(x+y)^2+2(x+y)+x^2-4x+15$
$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$
$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$
$\Leftrightarrow x=2; y=-3$
cho em hỏi khúc này là sao ạ:
=(x+y−2)^2+(x−1)^2+(y−1)^2+3992≥3992
^
| em chỉ chx hiểu khúc này thôi
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)
\(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)
vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên
\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)
hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Lời giải:
Biểu thức 1:
\(y=\frac{2x^2-2x+2}{x^2+1}=\frac{2(x^2+1)-2x}{x^2+1}\)
\(\Leftrightarrow y=2-\frac{2x}{x^2+1}\)
Áp dụng BĐT AM-GM ta có: \(x^2+1\geq 2\sqrt{x^2}\Leftrightarrow x^2+1\geq 2|x|\)
\(\Rightarrow (x^2+1)^2\geq 4x^2\)
\(\Rightarrow \left(\frac{2x}{x^2+1}\right)^2\leq 1\Leftrightarrow -1\leq \frac{2x}{x^2+1}\leq 1\)
Từ đây suy ra \(\left\{\begin{matrix} y=2-\frac{2x}{x^2+1}\geq 1\Leftrightarrow x=1\\ y=2-\frac{2x}{x^2+1}\leq 3\Leftrightarrow x=-1\end{matrix}\right.\)
Vậy \(y_{\min}=1;y_{\max}=3\)
Biểu thức 2:
ĐKXĐ: $x,y$ không đồng thời bằng 0
\(Q=\frac{2x^2+4xy+5y^2}{x^2+y^2}=\frac{(x^2+y^2)+(x+2y)^2}{x^2+y^2}\)
\(\Leftrightarrow Q=1+\frac{(x+2y)^2}{x^2+y^2}\)
Ta thấy \((x+2y)^2\geq 0\forall x,y\in\mathbb{R}; x^2+y^2>0\) (nằm trong khoảng xác định)
\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\geq 0\Rightarrow Q\geq 1\)
Vậy \(Q_{\min}=1\Leftrightarrow x=-2y\) và \(x,y \neq 0\)
Mặt khác theo BĐT Bunhiacopxky:
\((x+2y)^2\leq (x^2+y^2)(1+2^2)=5(x^2+y^2)\); \(x^2+y^2>0\) trong khoảng xác định
\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\leq \frac{5(x^2+y^2)}{x^2+y^2}=5\)
\(\Rightarrow Q\leq 1+5\Leftrightarrow Q\leq 6\Leftrightarrow Q_{\max}=6\)
Dấu bằng xảy ra khi \(\frac{x}{1}=\frac{y}{2}\Leftrightarrow 2x=y\) và \(x,y\neq 0\)
Tìm GTNN
Câu 1 :
\(C=2x^2-5x+1\)
\(C=2\left(x^2-\frac{5}{2}x+\frac{1}{2}\right)\)
\(C=2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{17}{16}\right)\)
\(C=2\left[\left(x-\frac{5}{4}\right)^2-\frac{17}{16}\right]\)
\(C=2\left(x-\frac{5}{4}\right)^2-\frac{17}{8}\ge\frac{-17}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Câu 2 :
\(D=x^2+2x+y^2-8y-4\)
\(D=x^2+2\cdot x\cdot1+1^2+y^2-2\cdot y\cdot4+4^2-21\)
\(D=\left(x+1\right)^2+\left(y-2\right)^2-21\ge-21\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTLN :
Câu 1 :
\(C=-2x^2+2x-1\)
\(C=-2\left(x^2-x+\frac{1}{2}\right)\)
\(C=-2\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(C=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]\)
\(C=-2\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(C=-\frac{1}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{1}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Câu 2 :
\(D=-x^2-y^2-x+y-4\)
\(D=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{2}\)
\(D=-\left(x+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2-\frac{7}{2}\)
\(D=\frac{-7}{2}-\left[\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right]\le\frac{-7}{2}\forall x;y\)
Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
Ta có \(2x^2+2xy+y^2-2x\le8\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2\le9\)
\(\Rightarrow\left(x+y\right)^2\le9-\left(x-1\right)^2\le9\)
\(\Rightarrow x+y\le3\)
\(P=\frac{2}{x}+2x+\frac{4}{y}+y-4\left(x+y\right)\ge2\sqrt{\frac{4x}{x}}+2\sqrt{\frac{4y}{y}}-4.3=-4\)
\(\Rightarrow P_{min}=-4\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=3x^2+y^2-2x+y\)
\(=3\left(x^2-\dfrac{1}{3}x.2+\dfrac{1}{9}-\dfrac{1}{9}\right)+\left(y^2+2.y.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+\left(y+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=3\left(x-\dfrac{1}{3}\right)^2+\left(y+\dfrac{1}{2}\right)^2-\dfrac{7}{12}\ge\dfrac{-7}{12}\)
Dấu " = " khi \(\left\{{}\begin{matrix}3\left(x-\dfrac{1}{3}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{-7}{12}\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-1}{2}\end{matrix}\right.\)
\(Q=\left(2x+y\right)^2-2\left(2x+y\right)-8\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1-9\)
\(=\left(2x+y-1\right)^2-9\ge-9\forall x,y\)
Dấu '=' xảy ra khi 2x+y-1=0
=>y=-2x+1
Để tìm giá trị nhỏ nhất (GTNN) của hàm số Q = (2x + y)^2 - 2(2x + y) - 8, chúng ta có thể sử dụng phương pháp vi tích phân.
Bước 1: Viết lại hàm số Q
Q = (2x + y)^2 - 2(2x + y) - 8
Q = 4x^2 + 4xy + y^2 - 4x - 2y - 8
Q = 4x^2 + 4xy + y^2 - 4x - 2y - 8
Bước 2: Tính đạo hàm riêng của Q theo x và y
∂Q/∂x = 8x + 4y - 4
∂Q/∂y = 4x - 2
Bước 3: Tìm điểm cực trị bằng cách giải hệ phương trình:
∂Q/∂x = 0
∂Q/∂y = 0
Giải hệ phương trình này, ta được:
x = -y/2
y = 0
Thay các giá trị này vào hàm số Q, ta có:
Q = 4(-y/2)^2 + 4(-y/2)(0) + 0^2 - 4(-y/2) - 2(0) - 8
Q = 4(y^2/4) - 2y - 8
Q = y^2/2 - 2y - 8
Bước 4: Tìm GTNN của Q
Để tìm GTNN của Q, ta tính đạo hàm của Q và bằng 0:
dQ/dy = y - 2 = 0
y = 2
Thay y = 2 vào hàm số Q, ta có:
Q = 2^2/2 - 2(2) - 8
Q = 2 - 4 - 8
Q = -10
Vậy GTNN của Q là -10.
Tham khảo