A=1/2+1/6+1/12+1/20+...+1/121 tìm A theo cách thuận tiện nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+....+\dfrac{1}{110}\)
\(=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+....+\dfrac{1}{10\times11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)

* Bạn tham khảo nhé *
1212 ++ 1616 ++ 112112 ++ 120120 ++ 130130 ++ 142142 ++ 156156
== 11×211×2 ++ 12×312×3 ++ 13×413×4 ++ 14×514×5 ++ 15×615×6 ++ 16×716×7 ++ 17×817×8
== 1111 −− 1212 ++ 1212 −− 1313 ++ 1313 −− 1414 ++ 1414 −− 1515 ++ 1515 −− 1616 ++ 1616 −− 1717 ++ 1717 −− 1818
== 1111 −− 1818
== 8888 −− 1818
== 78

\(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}-\frac{1}{3\cdot4}-\frac{1}{4\cdot5}-\frac{1}{5\cdot6}\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{3}-\frac{1}{3}-\frac{1}{4}-\frac{1}{4}-\frac{1}{5}-\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)
NHỚ K MK NHA. CHÚC BẠN HỌC TỐT
1/2 - 1/6 - 1/12 - 1/20 - 1/30
=1/1x2 - 1/2x3- 1/3x4 - 1/4x5 - 1/5x6
=1-1/2 + 1/2-1/3 + 1/3-1/4 + 1/4-1/5 +1/5-1/6
=1-1/6
=5/6

\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=\dfrac{1}{2}-\dfrac{1}{6}\)
\(=\dfrac{1}{3}\)

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}+\frac{1}{90}\right)\)
\(=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(=\frac{9}{10}-\frac{9}{10}=0\)

: A = 1/6+1/12+1/20+1/30+.........+1/210
A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/14.15
A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/14 - 1/15
A = 1/2 - 1/15
A = 13/30
Ta có: 1/2= 1/1- 1/2
1/6= 1/2 - 1/3
1/12= 1/3- 1/4
...
1/30= 1/5 - 1/6
1/42= 1/6 - 1/7
Thay vào tổng kia: 1/2+1/6+...+1/30+1/42= 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/5 - 1/6 + 1/6 - 1/7 = 1/2 - 1/7= 5/14
Chúc bạn học tốt. Thân!

Ta có: A = \(\frac{6}{5\times7}+\frac{6}{7\times9}+\frac{6}{9\times11}+...+\frac{6}{95\times97}+\frac{6}{97\times99}\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{95\times97}+\frac{1}{97\times99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{99}\right)\)
=> A = ...
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)

\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
`=7/30`
A = \(\frac12\) + \(\frac16\) +...+ \(\frac{1}{121}\)
Xét mẫu số của các phân số của A là các số thuộc dãy số: 2; 6;...;121
Mẫu số cuối cùng là số lẻ không phù hợp với quy luật. Việc tính thuận tiện là không thể.
1/2+1/6+1/12+1/20+...+1/121
=1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/11.12
=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/11 - 1/12
= 1- 1/12
= 11/12
Có gì sai nói mik nha :D