K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

LG
8 tháng 8

100 x 100 = 10 000

LG
8 tháng 8

22 tháng 7 2015

Ta có:A=20,13.100+2013.100/50+201,3:0,1+2,013:0,001

        A=2013+2013.2+2013+2013

        A=2013.(1+2+1+1)

        A=2013.5

        A=10065

14 tháng 6 2018

\(A=20,13\cdot100+2013\cdot\frac{100}{50}+201,3:0,1\)\(+2,013:0,001\)

\(A=2013+2013\cdot2+2013+2013\)

\(A=2013\cdot1+2013\cdot2+2013\cdot1+2013\cdot1\)

\(A=2013\cdot\left(1+2+1+1\right)\)

\(A=2013\cdot5\)

\(A=10065\)

5 tháng 10 2016

1/1 - 1/101 = 100/101

5 tháng 10 2016

bằng 100/101

26 tháng 3 2018

\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+.....+\left(1+2+3+4+......+100\right)}{\left(1.100+2.99+3.98+.......+99.2+100.1\right).2013}\)

\(=\frac{1.100+2.99+3.98+......+99.2+100.1}{\left(1.100+2.99+3.98+.....+99.2+100.1\right).2013}\)

\(=\frac{1}{2013}\)

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

22 tháng 4 2021

a)3,25 x 10 = 32,5             b)417,56 x 100 = 41756     c)28,5 x 100 = 285                           3,25 x 0,1 = 0,325             417,56 x 0,01 = 4,1756       28,5 x 0,01 = 0,285

14 tháng 3 2016

Mk nghĩ A>2

12 tháng 5 2020

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

12 tháng 5 2020

cảm ơn bạn nha

16 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

18 tháng 8 2016

1/51+1/52+1/53 +...+1/100