\(-A\times\frac12xy^3=\frac{-7}{8}x^3y^6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{4}{7}\times x=\frac{1}{5}+\frac{2}{3}\)
\(\frac{4}{7}x=\frac{13}{15}\)
\(\Rightarrow x=\frac{91}{60}\)
các bài còn lại tương tự nha
mấy cái này dễ mà toán tìm x này là cơ bản!!
67865785685685785785774677567568568

\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)

a) $\frac{1}{6} \times ...... = \frac{1}{6}$
$\frac{1}{6}:\frac{1}{6} = 1$
b) $......\, \times \frac{4}{7} = 0$
$0:\frac{4}{7} = 0$
c) $\frac{5}{8}:...... = \frac{5}{8}$
$\frac{5}{8}:\frac{5}{8} = 1$

a) 1 và $\frac{2}{5}$
$1 = \frac{1}{1} = \frac{{1 \times 5}}{{1 \times 5}} = \frac{5}{5}$
Ta có $\frac{5}{5}$ và $\frac{2}{5}$
b) 2 và $\frac{3}{8}$
$2 = \frac{2}{1} = \frac{{2 \times 8}}{{1 \times 8}} = \frac{{16}}{8}$
Ta có $\frac{{16}}{8}$ và $\frac{3}{8}$
c) $\frac{1}{3}$ và 5
$5 = \frac{5}{1} = \frac{{5 \times 3}}{{1 \times 3}} = \frac{{15}}{3}$
Ta có $\frac{1}{3}$ và $\frac{{15}}{3}$
a: \(1=\dfrac{1}{1}=\dfrac{1\cdot5}{5\cdot5}=\dfrac{5}{5}\)
\(\dfrac{2}{5}=\dfrac{2}{5}\)
b: \(2=\dfrac{2\cdot8}{1\cdot8}=\dfrac{16}{8}\); \(\dfrac{3}{8}=\dfrac{3}{8}\)
c: \(5=\dfrac{5}{1}=\dfrac{5\cdot3}{1\cdot3}=\dfrac{15}{3};\dfrac{1}{3}=\dfrac{1}{3}\)

a) \(\frac{16}{35}+\frac{8}{35}=\frac{24}{35}\)
b)\(\frac{160}{77}-\frac{28}{77}=\frac{132}{77}=\frac{12}{1}=12\)
c)\(\frac{72}{180}=\frac{18}{45}\)
d) \(\frac{90}{360}=\frac{1}{4}\)

\(x+\frac{15}{7}=\frac{9}{2}\)
\(x=\frac{9}{2}-\frac{15}{7}=\frac{33}{14}\)
\(x-\frac{3}{4}=\frac{7}{2}\)
\(x=\frac{7}{2}+\frac{3}{4}=\frac{17}{4}\)
\(x.\frac{7}{8}=\frac{12}{5}\)
\(x=\frac{12}{5}:\frac{7}{8}=\frac{96}{35}\)
\(\frac{5}{6}:x=\frac{4}{3}\)
\(x=\frac{5}{6}:\frac{4}{3}=\frac{5}{8}\)
- a) x=9/2-15/7=33/14
- b) x=7/2+3/4=17/4
- c) x=12/5:7/8=61/35
- d) x=5/6:4/3=5/8
- k nha

Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
\(-A\cdot\frac12xy^3=-\frac78x^3y^6\)
\(\Rightarrow A=-\frac78x^3y^6:\frac12xy^3\)
\(\Rightarrow A=-\frac74x^2y^3\)
A = 7/4 x^2 y^3