K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2013^5+2013^3+2013

5 tháng 8

Ta có biểu thức:
B = x⁶ - 2013x⁵ + 2013x⁴ + 2013x + 2013x² - 2013x + 2013

Thay x = 2013 vào:

B = 2013⁶ - 2013×2013⁵ + 2013×2013⁴ + 2013×2013 + 2013×2013² - 2013×2013 + 2013

Ta nhóm lại theo từng cặp cho dễ nhìn:

B = 2013⁶ - 2013×2013⁵

  • 2013×2013⁴
  • 2013×2013²
  • 2013×2013
  • 2013×2013
  • 2013

Nhận thấy:
2013⁶ - 2013×2013⁵ = 0
2013×2013 - 2013×2013 = 0

Vậy chỉ còn:
B = 2013×2013⁴ + 2013×2013² + 2013
= 2013 × (2013⁴ + 2013² + 1)

Gọi A = 2013
B = A × (A⁴ + A² + 1)

Tính A = 2013
A² = 2013² = 4052169
A⁴ = (2013²)² = 4052169² (rất lớn)

Nhưng ta chỉ cần biểu diễn gọn:

Vậy kết quả là:
B = 2013 × (2013⁴ + 2013² + 1)

Hoặc nếu viết đầy đủ:
B = A × (A⁴ + A² + 1), với A = 2013

Cho mình xin 1 tick với ạ.

5 tháng 7 2016

Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)

Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)

Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)

\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)

\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)

Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).

30 tháng 5 2020

f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1 

= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1 

= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1 

= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1

= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1

= x - 1 = 2012 - 1 = 2011

x=2012

nên x+1=2013

\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)

=x-1

=2012-1=2011

x=2012

nên x+1=2013

\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...+x\left(x+1\right)-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...+x^2+x+1\)

=x+1=2013

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)