K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7

1-x = (1/3 ) mũ 2
1-x = +-1/3
1-x =1/3
x=0,6
1-x=-1/3
x=1,3

Ta có: \(\left(1-x\right)^2=\frac19\)

=>\(\left(x-1\right)^2=\frac19\)

=>\(\left[\begin{array}{l}x-1=\frac13\\ x-1=-\frac13\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac13+1=\frac43\\ x=-\frac13+1=\frac23\end{array}\right.\)

13 tháng 2 2016

1.1 Hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 20 góc. S

2.1 hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 16 góc. Đ

3. 1 hình vuông có tối thiểu 4 góc vậy 4 hình vuông có tối thiểu 16 góc. Đ

4.1 hình vuông có tối thiểu 1 góc vậy 4 hình vuông có tối thiểu 16 góc. S

Nhiêu đó hết tài năng rồi, mình mới lớp 3 thôi.

 

 

a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)

\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)

=>-2x=10

hay x=-5

d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)

\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)

\(\Leftrightarrow x^2+9x-90=0\)

\(\Leftrightarrow x\in\left\{6;-15\right\}\)

25 tháng 3 2021

mik ko bt

22 tháng 7 2021
trung bình cộng của các số 545,328,624,295 là bao nhiêu
29 tháng 6 2023

Let's solve each equation step by step:

√(x^2 - 6x + 9) = 3 - x

Squaring both sides of the equation, we get:
x^2 - 6x + 9 = (3 - x)^2
x^2 - 6x + 9 = 9 - 6x + x^2

The x^2 terms cancel out, and we are left with:
-6x = -6x

This equation is true for any value of x. Therefore, there are infinitely many solutions.

x^2 - (1/2)x + 1/16 = x + 3/2

Moving all terms to one side of the equation, we get:
x^2 - (1/2)x - x + 3/2 - 1/16 = 0
x^2 - (3/2)x + 29/16 = 0

To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = -3/2, and c = 29/16. Plugging in these values, we get:
x = (3/2 ± √((-3/2)^2 - 4(1)(29/16))) / (2(1))
x = (3/2 ± √(9/4 - 29/4)) / 2
x = (3/2 ± √(-20/4)) / 2
x = (3/2 ± √(-5)) / 2

Since the square root of a negative number is not a real number, this equation has no real solutions.

√(x - 2)√(x - 1) = √(x - 1) - 1

Squaring both sides of the equation, we get:
(x - 2)(x - 1) = (x - 1) - 2√(x - 1) + 1
x^2 - 3x + 2 = x - 1 - 2√(x - 1) + 1
x^2 - 4x + 2 = -2√(x - 1)

Squaring both sides again, we get:
(x^2 - 4x + 2)^2 = (-2√(x - 1))^2
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4(x - 1)
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4x - 4

Rearranging terms, we have:
x^4 - 8x^3 + 20x^2 - 20x + 8 = 0

This equation does not have a simple solution and requires further calculations or approximation methods to find the solutions.

√9 - 4√5 - √5 = -2

Simplifying the left side of the equation, we get:
3 - 4√5 - √5 = -2
-√5 - 5 = -2
-√5 = 3

This equation is not true since the square root of a number cannot be negative.

Therefore, the given equations either have infinitely many solutions or no real solutions.

  
23 tháng 7 2018

a) \(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)

b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{64}-1\right)\)

\(=\dfrac{9^{64}-1}{10}\)

Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)

\(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)

\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)

c) Ta có:

\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)

Vì x>y>0, ta có:

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)

Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)

18 tháng 9 2018

a) Ta có:

\(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2

14 tháng 11 2018

Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)

\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)

\(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)

\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)

=\(\frac{90-45}{45}=\frac{45}{45}=1\)

=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)

23 tháng 4 2021

Đáp án:ta có :

X1-1/9=X2-2/8=X3-3/7=......X9-9/1

Áp dụn t/c dãy tỉ số bằng nhau

⇒(X1 +X2+X3+........X9)-(1+2+3+...+9)/1=2+3+...+9

=90-45/45=1

⇒X1=X2=X3=X4=..=X9=10