5 tìm x biết
1) \(x^2-9=0\)
2) \(25-x^2=0\)
3) \(-x^2+36=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}

1. x(x + 1) - x2 + 1 = 0
<=> x(x + 1) - (x2 - 1) = 0
<=> x(x + 1) - (x + 1)(x - 1) = 0
<=> (x - x + 1)(x + 1) = 0
<=> x + 1 = 0\
<=> x = -1
2. 4x(x - 2) - 6 + 3x = 0
<=> 4x(x - 2) - (3x - 6) = 0
<=> 4x(x - 2) - 3(x - 2) = 0
<=> (4x - 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
3. x(x + 2) - 3(x + 2) = 0
<=> (x - 3)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Lời giải:
1. $(x+2)-2=0$
$x+2=2$
$x=0$
2.
$(x+3)+1=7$
$x+3=7-1=6$
$x=6-3=3$
3.
$(3x-4)+4=12$
$3x-4+4=12$
$3x=12$
$x=12:3=4$
4.
$(5x+4)-1=13$
$5x+4=13+1=14$
$5x=14-4=10$
$x=10:5=2$
5.
$(4x-8)-3=5$
$4x-8=5+3=8$
$4x=8+8=16$
$x=16:4=4$
6.
$3+(x-5)=7$
$x-5=7-3=4$
$x=4+5=9$
7.
$8-(2x-4)=2$
$2x-4=8-2=6$
$2x=6+4=10$
$x=10:2=5$
8.
$7+(5x+2)=14$
$5x+2=14-7=7$
$5x=7-2=5$
$x=5:5=1$
9.
$5-(3x-11)=1$
$3x-11=5-1=4$
$3x=11+4=15$
$x=15:3=5$
10.
$16-(8x+2)=6$
$8x+2=16-6=10$
$8x=10-2=8$
$x=8:8=1$

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1

`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`

a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.

\(a,\left(-5\right).\left|x\right|=-75\)
\(\left|x\right|=\frac{-75}{-5}=15\)
\(\Rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
Vậy....
\(b,\left(-6\right)^3.x^2=-1944\)
\(-216.x^2=-1944\)
\(x^2=9\)
\(\Rightarrow x=\pm3\)
Vậy....
\(d,\left|9-x\right|=-7+64\)
\(\left|9-x\right|=57\)
\(\Rightarrow\orbr{\begin{cases}9-x=57\\9-x=-57\end{cases}\Rightarrow\orbr{\begin{cases}x=-48\\x=66\end{cases}}}\)
Vậy...
\(e,\left|x+101\right|-\left(-16\right)=\left(-43\right).\left(-5\right)\)
\(\left|x+101\right|+16=215\)
\(\left|x+101\right|=199\)
\(\Rightarrow\orbr{\begin{cases}x+101=199\\x+101=-199\end{cases}\Rightarrow\orbr{\begin{cases}x=98\\x=-300\end{cases}}}\)
Vậy..
hok tốt!!
a,\(\left(-5\right).\left|x\right|=-75\)
\(=>\left|x\right|=-75:\left(-5\right)=15\)
\(=>\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
b,\(\left(-6\right)^3.x^2=-1944\)
\(=>\frac{1944}{216}=x^2\)
\(=>x=\sqrt{\frac{1944}{216}}=3\)

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
\(1)x^2-9=0\)
\(x^2-3^2=0\)
\(\left(x-3\right).\left(x+3\right)=0\)
\(TH1:x-3=0\)
\(x=3\)
\(TH2:x+3=0\)
\(x=-3\)
\(Vậyx\in\left\lbrace\underline{+}3\right\rbrace\)
\(2)25-x^2=0\)
\(5^2-x^2=0\)
\(\left(5-x\right).\left(5+x\right)=0\)
\(TH1:5-x=0\)
\(x=5\)
\(TH2:5+x=0\)
\(x=-5\)
\(Vậyx\in\left\lbrace-5;5\right\rbrace\)
\(3)-x^2+36=0\)
\(-\left(x^2-36\right)=0\)
\(-\left(x^2-6^2\right)=0\)
\(-\left(x-6\right).\left(x+6\right)=0\)
\(TH1:-\left(x-6\right)=0\)
\(-x+6=0\)
\(-x=-6\)
\(x=6\)
\(TH2:x+6=0\)
\(x=-6\)
\(Vậyx\in\left\lbrace-6;6\right\rbrace\)