K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
28 tháng 6

Ta có hệ:

`{(mx-y=2m),(4x-my=m+6):}`

Có: `a=m,b=-1,c=2m,a'=4,b'=-m,c'=m+6`

Hệ vô nghiệm khi:

`a/(a')=b/(b')\nec/(c')`

Suy ra: `m/4=(-1)/(-m)\ne(2m)/(m+6)`

`=>{(m/4=(-1)/(-m)),(m/4\ne(2m)/(m+6)):}`

`{(m/4=1/m),(m(m+6)\ne 8m):}`

`{(m^2=4),(m^2+6m-8m\ne0):}`

`{(m=+-2),(m^2-2m\ne0):}`

`{(m=+-2),(m(m-2)\ne0):}`

`{(m=+-2)(m\ne2),(m\ne0):}`

Suy ra: `m=-2`

Vậy khi `m=-2` thì pt vô nghiệm

28 tháng 6

\(\begin{cases}mx-y=2m\\ 4x-my=m+6\end{cases}\)

\(\begin{cases}m^2x-my=2m^2\\ 4x-my=m+6\end{cases}\)

\(\begin{cases}m^2x-my-\left(4x-my\right)=2m^2-\left(m+6\right)\\ 4x-my=m+6\end{cases}\) \(\begin{cases}m^2x-my-4x+my=2m^2-m-6\\ 4x-my=m+6\end{cases}\)

\(\begin{cases}\left(m^2-4\right)x-\left(my-my\right)=2m^2-m-6\\ 4x-my=m+6\end{cases}\) \(\begin{cases}\left(m^2-4\right)x=2m^2-m-6\\ 4x-my=m+6\end{cases}\)

m\(^2\) - 4 = 0 ⇒ m = \(\pm2\)

Nếu m = 2 ta có:

(\(2^2\) - 4)\(x\) = 2.2\(^2\) - 2 - 6

0\(x\) = 2.4 - 2 - 6

0 = 8 - (2 + 6)

0 = 8 - 8

0 = 0 (đúng với mọi x)

Nếu m = -2 ta có:

(2\(^2\) - 4)\(x\) = 2.(-2)\(^2\) -(- 2)- 6

0\(x\) = 2.4 + 2 - 6

0 = 8 + 2 - 6

0 = 10 - 6

0 = 4 (vô lý)

Vậy với m = - 2 thì hệ phương trình vô nghiệm


P
Phong
CTVHS
20 tháng 11 2023

 \(\left\{{}\begin{matrix}x+my=2m\\mx+y=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m^2\\mx+y=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)y=2m^2+m-1\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+m-1}{m^2-1}\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(2m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m-1\right)}\\x+my=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=2m-m\cdot\dfrac{2m-1}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m\left(m-1\right)}{m-1}-\dfrac{2m^2-m}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m^2-2m-2m^2+m}{m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{-m}{m-1}\end{matrix}\right.\)

Để hpt có nghiệm nguyên thì: \(x,y\) nguyên 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m-1}\in Z\left(1\right)\\\dfrac{-m}{m-1}\in Z1\left(2\right)\end{matrix}\right.\)

Ta có: \(\left(1\right)=\dfrac{2m-2+1}{m-1}=2+\dfrac{1}{m-1}\)

\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (*) 

\(\left(2\right)=\dfrac{-m+1-1}{m-1}=\dfrac{-\left(m-1\right)-1}{m-1}=-1-\dfrac{1}{m-1}\)

\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (**)

Từ (*) và (**) ⇒ \(m\in\left\{0;2\right\}\)

17 tháng 1 2018

ữdqwdxqwđxưqxwqxqwxđqưdưqx

14 tháng 11 2018

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

14 tháng 11 2018

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)

7 tháng 1 2022

\(\hept{mx+y=3m-1x+my=m+1}\hept{\begin{cases}y=3m-1-mx\\x+m\left(3m-1-mx\right)=m+1y\end{cases}}\)

\(\left(1\right)\hept{\begin{cases}x+3m^2-m-m^2+x=m+1\\x\left(1-m^2\right)=-3m^2+2m+1\\\left(m-1\right)\left(m+1\right).x=\left(3m-1\right)\left(m-1\right)\end{cases}}\)

\(TH_1\): Để hệ có một nghiệm duy nhất ta có :

- m -1 khác 0

- m + 1 khác 0

\(x=\frac{3m-1}{m+1}\)

\(TH_2\): Để hệ có vô  nghiệm thì

\(\hept{\begin{cases}m-1=0\\m-1\end{cases}}\)

\(TH_3:\)Để hệ có vô số nghiệm thì :

\(\hept{\begin{cases}m+1=0\\m-1=0\end{cases}}\)

7 tháng 1 2022

rep it me

12 tháng 4 2018

a) với m=2 thì \(hpt\Leftrightarrow\hept{\begin{cases}x+y=1\left(1\right)\\2x+y=4\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(\left(2\right)-\left(1\right)\right)\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

b) \(\hept{\begin{cases}x+y=1\left(a=1;b=1;c=1\right)\\mx+y=2m\left(a^,=m;b^,=1;c^,=2m\right)\end{cases}}\)

hãy sử dụng CT và thế a, b, c, a,, b,, c, rồi tìm ra m

  • có vô số nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}=\frac{c}{c^,}\)
  • vô nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}\ne\frac{c}{c^,}\)
  • có 1 nghiệm duy nhất nếu\(\frac{a}{a^,}\ne\frac{b}{b^,}\)
12 tháng 4 2018

Cảm ơn bạn nha!!

27 tháng 4 2020

\(\hept{\begin{cases}mx-y=2m\left(1\right)\\4x-my=m+6\left(2\right)\end{cases}}\)

Từ (1) ta có: y=mx-2m, thay y vào (2) ta được

\(4x-m\left(mx-2m\right)=m+6\)

\(\Leftrightarrow\left(4-m^2\right)x=-2m^2+m+6\)

\(\Leftrightarrow\left(m^2-4\right)x=\left(2m+3\right)\left(m-2\right)\left(3\right)\)

Nếu \(m^2-4\ne\)0 hay m\(\ne\pm\)2 thì \(x=\frac{2m+3}{m+2}\)

Khi đó: \(y=mx-2m=\frac{2m^2+3m}{m+2}-2m=-\frac{m}{m+2}\)

Hệ có nghiệm duy nhất \(\left(\frac{2m+3}{m+2};\frac{-m}{m+2}\right)\)

Nếu m=2 thì (3) thỏa mãn với mọi x, và khi đó y=mx-2m=2x-4

Hệ vô số nghiệm \(\left(x;2x-4\right)\)với \(x\inℝ\)

Nếu m=-2 thì (3) trở thành 0x=4. Hệ vô nghiệm