ƯCLN\(\left(\right. 60 ,\) \(350 \left.\right) =\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) (-24) + 6 + 10 + 24
= [(-24) + 24] + 6 + 10
= 0 + 6 + 10
= 16
b) 15 + 23 + (-25) + (-23)
= [15+ (-25)] + [23 +(-23)]
= -10 + 0
= -10
c) (-3) + (-350) + (-7) + 350
=[-350 + 350] + [-3+(-7)]
= 0 + (-10)
= -10
d) (-9) + (-11) +21 + (-1)
= [ (-9) + (-11) ] + [ 21 + (-1)]
= -20 + 20
= 0

a) Số trừ là \(9\) có số đối là \(\left( { - 9} \right)\) nên ta có:
\(6 - 9 = 6 + \left( { - 9} \right) = - \left( {9 - 6} \right) = - 3\)
b) Số trừ là \(\left( { - 12} \right)\) có số đối là \(12\) nên ta có:
\(23 - \left( { - 12} \right) = 23 + 12 = 35\)
c) Số trừ là \(\left( { - 60} \right)\) có số đối là \(60\) nên ta có:
\(\begin{array}{l}\left( { - 35} \right) - \left( { - 60} \right) = \left( { - 35} \right) + 60\\ = 60 - 35 = 25\end{array}\)
d) Số trừ là \(53\) có số đối là \(\left( { - 53} \right)\) nên ta có:
\(\begin{array}{l}\left( { - 47} \right) - 53 = \left( { - 47} \right) + \left( { - 53} \right)\\ = - \left( {47 + 53} \right) = - 100\end{array}\)
e) Số trừ là \(\left( { - 43} \right)\) có số đối là 43 nên ta có:
\(\left( { - 43} \right) - \left( { - 43} \right) = \left( { - 43} \right) + 43 = 0\).

\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)

sin^2x+sin^2(60-x)+sinx*sin(60 độ-x)
\(=sin^2x+\left[sin60\cdot cosx-sinx\cdot cos60\right]^2+sinx\cdot\left[sin60\cdot cosx-sinx\cdot cos60\right]\)
\(=sin^2x+\left[-\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]^2+sinx\left[\dfrac{-1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]\)
\(=sin^2x+\dfrac{1}{4}sin^2x-\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x+\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx\)
\(=\dfrac{5}{4}sin^2x+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x\)
=3/4*(sin^2x+cos^2x)=3/4

1/
\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)
\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)
2/
\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)
\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)
3/
\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)
\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)
\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)
\(=-1+2cos2a+1-cos2a=cos2a\)
\(60=2^2\cdot3\cdot5;350=5^2\cdot2\cdot7\)
=>\(ƯCLN\left(60;350\right)=2\cdot5=10\)
=10