K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k\)

\(c=d.k\)

Ta có:

\(\frac{2a+3c}{2b+3d}=\frac{2bk+3dk}{2b+3d}=\frac{k\left(2b+3d\right)}{2b+3d}=k\) (trường hợp 1)

\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (trường hợp 2)

Từ trường hợp 1 và 2trên:

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

16 tháng 5

\(A = \frac{2 a + 3 c}{2 b + 3 d}\)

\(B = \frac{2 a - 3 c}{2 b - 3 d}\)

\(A - B = \frac{2 a + 3 c}{2 b + 3 d} - \frac{2 a - 3 c}{2 b - 3 d}\)

Quy đồng mẫu:

\(A - B = \frac{\left(\right. 2 a + 3 c \left.\right) \left(\right. 2 b - 3 d \left.\right) - \left(\right. 2 a - 3 c \left.\right) \left(\right. 2 b + 3 d \left.\right)}{\left(\right. 2 b + 3 d \left.\right) \left(\right. 2 b - 3 d \left.\right)}\)

Tính tử số:

\(\left(\right. 2 a + 3 c \left.\right) \left(\right. 2 b - 3 d \left.\right) = 4 a b - 6 a d + 6 b c - 9 c d\)

\(\left(\right. 2 a - 3 c \left.\right) \left(\right. 2 b + 3 d \left.\right) = 4 a b + 6 a d - 6 b c - 9 c d\)

Lấy hiệu hai biểu thức:

\(\left[\right. 4 a b - 6 a d + 6 b c - 9 c d \left]\right. - \left[\right. 4 a b + 6 a d - 6 b c - 9 c d \left]\right.\)

\(= 4 a b - 6 a d + 6 b c - 9 c d - 4 a b - 6 a d + 6 b c + 9 c d\)

\(= \left(\right. - 12 a d + 12 b c \left.\right)\)

=> Tử số khác 0 trừ khi \(b c = a d\).
vậy

\(\frac{2 a + 3 c}{2 b + 3 d}=\frac{2 a - 3 c}{2 b - 3 d}\) nếu \(ad=bc\)

2 tháng 10 2018

cho \(\frac{a}{b}\)\(\frac{c}{d}\)

2 tháng 10 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\implies \frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\) (đpcm).

_Học tốt_

19 tháng 9 2019

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C+2A-3C}{2B+3D+2B-3D}=\frac{4A}{4B}=\frac{A}{B}\left(1\right)\)\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C-2A+3C}{2B+3D-2B+3D}=\frac{6C}{6D}=\frac{C}{D}\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{A}{B}=\frac{C}{D}\)

19 tháng 9 2019

Giải :

Từ đảng thức : \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2b+3d\right).\left(2a-3c\right)\)

\(\Rightarrow4ab-6ad+6bc-9cd=4ab-6bc+6ad-9cd\)

\(\Rightarrow\left(4ab-6ad+6bc-9cd\right)-\left(4ab-6bc+6ad-9cd\right)=0\)

\(\Rightarrow4ab-6ad+6bc-9cd-4ab+6bc-6ad+9cd=0\)

\(\Rightarrow\left(4ab-4ab\right)-\left(6ad+6ad\right)+\left(6bc+6bc\right)-\left(9cd-9cd\right)=0\)

\(\Rightarrow-12ad+12bc=0\)

\(\Rightarrow12bc=12ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)

30 tháng 7 2016

VT: (2a+3c)(2b-3d) = 4ab + 6bc - 6ad - 9cd    (1)

VP: (2a - 3c)(2b+3d) = 4ab + 6bc + 6ad - 9cd     (2)

Từ (1) và (2) => Đâu có bằng nhau đâu...

26 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)

\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{2a+3c}{2b+3d}\) (Đpcm)

26 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)

\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{3a+3c}{2b+3d}\)( Đpcm )

11 tháng 8 2016

Vì theo định lí sgk thì

\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a-c}{b-d}=\frac{a+c}{b+d}\)từ định lí đó suy ra \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\)

bạn à viết sai đề rồi nhá

16 tháng 2 2015

vế phải dưới mẫu là 2b + 3d chứ?

7 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) và \(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

27 tháng 12 2020

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó (2a + 3c)(2b - 3d) 

= (2bk + 3dk)(2b - 3d)

= k(2b + 3d)(2b - 3d) (1)

(2a - 3c)(2b + 3d)

= (2bk - 2dk)(2b + 3d)

= k(2b - 3d)(2b + 3d) (2)

Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)

b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)

Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)

Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d) 

27 tháng 12 2020

1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)

        Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)

Câu 2 cũng tương tự nên tự làm đi

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\left(a+c\right)\cdot\left(b-d\right)=\left(bk+dk\right)\left(b-d\right)=k\left(b^2-d^2\right)\)

\(\left(a-c\right)\left(b+d\right)=\left(bk-dk\right)\left(b+d\right)=k\left(b^2-d^2\right)\)

Do đó: \(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)

b: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2bk+3dk\right)\left(2b-3d\right)=k\left(4b^2-9d^2\right)\)

\(\left(2a-3c\right)\left(2b+3d\right)=\left(2bk-3dk\right)\left(2b+3d\right)=k\left(4b^2-9d^2\right)\)

Do đó: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2a-3c\right)\left(2b+3d\right)\)