Tính tổng sau :
A=\(\frac13+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+\cdots+\frac{100}{3^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)
\(A-\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{1}{2}A=\left(1-\frac{1}{2^{101}}\right)\div\frac{1}{2}-\frac{100}{2^{101}}\)
\(=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(\Rightarrow A=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{100}}\)
A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100
Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100
A= 99/100
Cảm ơn bạn Kudo Shinichi, nhưng
1=2-1 ->ok
1/2=1-1/2 ->ok
1/3=1/2-1/3 -> sai
vì 1/2-1/3=1/6
\(A=\frac13+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+\cdots+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac23+\frac{3}{3^2}+\frac{4}{3^3}+\cdots+\frac{100}{3^{99}}\)
\(\Rightarrow3A-A=1+\left(\frac23-\frac13\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+\cdots+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)+\frac{100}{3^{100}}\)
\(\Rightarrow2A=1+\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
Đặt \(B=1+\frac13+\frac{1}{3^2}+\cdots+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\frac13+\cdots+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3B-B=3+\left(1-1\right)+\left(\frac13-\frac13\right)+\cdots+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)+\frac{1}{3^{99}}\)
\(\Rightarrow2B=3+\frac{1}{3^{99}}\)
\(B=\frac32+\frac{1}{3^{99}.2}\)
Khi đó, ta có:
\(2A=B+\frac{100}{3^{100}}\)
\(2A=\frac32+\frac{1}{3^{99}.2}+\frac{100}{3^{100}}\)
\(B=\frac34+\frac{1}{3^{99}.4}+\frac{100}{3^{100}.2}\)