rút gon
\(\frac{10}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H = 10/56 + 10/140 + 10/260 +…..+ 10/1400
H = 5/28 + 5/70 + 5/130 +…..+ 5/700
H = 5 x (1/4.7 + 1/7.10 + 1/10.13 +…………+ 1/25.28)
H = 5/3 x (3/4.7 + 3/7.10 + 3/10.13 +………+ 3/25.28)
H = 5/3 x (1/4-1/7+1/7-1/10+1/10-1/13+……..+1/25-1/28)
H = 5/3 x (1/4-1/28)
H = 5/3 x 3/14 = 5/14
\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Vây...
\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)
Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:
\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)
\(\frac{48c^2+27b^2+36c^2}{a^2+b^2+c^2}=\frac{14\cdot3c^2+9\cdot3b^2+12\cdot3a^2}{a^2+b^2+c^2}=\frac{3\left(14c^2+9b^2+12a^2\right)}{a^2+b^2+c^2}\)
\(36-6.\frac{10}{36}\)
\(=36-6.\frac{1}{36}\)
\(=36-\frac{1}{6}\)
\(=\frac{103}{3}\)
Hình như đề sai.Sửa đề luôn nha !
\(ĐKXĐ:x\ne\pm2\)
\(A=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right):\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{-6}=\frac{1}{x-2}\)
b
Để \(A< 0\Rightarrow\frac{1}{x-2}< 0\Rightarrow x-2< 0\Rightarrow x< 2\)
c
Để A nguyên thì \(\frac{1}{x-2}\) nguyên
\(\Rightarrow1⋮x-2\)
\(\Rightarrow x-2\in\left\{1;-1\right\}\Rightarrow x\in\left\{3;1\right\}\)
\(A=\frac{2^{10}.3^8-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=\frac{1-3}{1+5}=\frac{-1}{3}\)
\(\frac{10}{2}=\frac{10:2}{2:2}=\frac51=5\)
5