K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

20 tháng 2 2021

ĐỀ sai rồi, ngược lại mới đúng.

MuxnmdD.png

21 tháng 2 2021

Mình hơi khó hiểu dòng thứ 4 bạn giải thích lại đc ko

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

23 tháng 7

+) 1/a+4a^3 >=4a^2 (1)

+1/b+4b^3>=4b^2(2)

+1/c+4c^3>=4c^2(3)

(1)(2)(3) suy ra 1/a+1/b+1/c+4(a^3+b^3+c^3) >=4(a^2+b^2+c^2)

mặt khác a^3+b^3+1 >=3ab

b^3+c^3+1>=3bc

c^3+a^3+1>=3ac

2( a^3+b^3+c^3)>=6abc

suy ra 4(a^3+b^3+c^3)+3>=3(ab+bc+ca+2abc)=3.1=3

suy ra 4(a^3+b^3+c^3)>=1 suy rac 1/a+1/b+1/c >=4(a^2+b^2+c^2) (dpcm)