Thực hiện pHép Tính
4: 2 =
2: 2=
1: 1=
0: 2=
1+ 1+ 1+ 1 + 1 + 1 + 1x1-0x0 + 1 x0 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right).....\left(1-\dfrac{1}{2008^2}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{2008^2-1}{2008^2}\)
\(=\dfrac{1.3}{4}.\dfrac{2.4}{9}.\dfrac{3.5}{16}....\dfrac{2007.2009}{2008^2}\)
\(=\left(\dfrac{1.2.3...2007}{2.3.4....2008}\right).\dfrac{3.4.5...2009}{2.3.4...2008}\)
\(=\dfrac{1}{2008}.\dfrac{2009}{2}=\dfrac{2009}{4016}\)
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
Syntax ERROR
Ở đầu quên viết dấu "(" kìa
Nếu có dấu ")" ở đầu thì kết quả bằng 0
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
a: \(=\dfrac{7+12-6}{13}=1\)
b: \(=\dfrac{13}{10}\cdot\dfrac{6-26}{13}=\dfrac{-20}{10}=-2\)
c: \(=\dfrac{3}{4}\cdot2-\dfrac{5}{2}\cdot\dfrac{-4}{3}=\dfrac{3}{2}+\dfrac{20}{6}=\dfrac{3}{2}+\dfrac{10}{3}=\dfrac{29}{6}\)
d: \(=\dfrac{3}{8}\cdot\dfrac{8}{5}+\dfrac{3}{5}\cdot\dfrac{2}{7}+\dfrac{3}{5}\cdot\dfrac{5}{7}=\dfrac{3}{5}+\dfrac{3}{5}=\dfrac{6}{5}\)
cảm ơn bn, mình đặt câu hỏi, bn thườg xuyên trả lời câu hỏi của mình. Thank you very much.
P = (-1/2).(-2/3). .... . (-2015/2016)
= -(1/2.2/3. ... . 2015/2016)
= -(1.2. ... . 2015/2.3. ... .2016)
= -1/2016
Tk mk nha
Xét thừa số tổng quát:
\(\frac{1+2+...+n}{n}=\frac{n\left(n+1\right):2}{n}=\frac{n+1}{2}\)
Thay vào bài toán:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+3+...+200\right)\)
\(E=1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+200}{200}\)
\(E=1+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{200+1}{2}\)
\(E=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(E=\frac{2+3+4+...+201}{2}=\frac{20300}{2}=10150\)
Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath
4:2=2
2:2=1
1:1=1
0:2=0
1+1+1+1+1+1+1×1-0÷0+1x0
=6+1-0+0
=7
4:2=2
2:2=1
1:1=1
0:2=0
1+1+1+1+1+1+1×1-0÷0+1x0
=6+1-0+0
=7