K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

abcd chia hết cho 99 thì ab + cd chia hết cho 99 
abcd=ab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd
vì 99 chia hết cho 99 => a.99 chia hết cho 99 
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số) 
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99 
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99 
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99) 
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số) 
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd 
vậy abcd chia hết cho 99abcd chia hết cho 99 thì ab + cd chia hết cho 99 
abcdab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd) 
vì 99 chia hết cho 99 => a.99 chia hết cho 99 
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số) 
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99 
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99 
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99) 
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số) 
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd 
vậy abcd chia hết cho 99

11 tháng 12 2016

Ta có:

\(\overline{abcd}\text{⋮}99\)

\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)

\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)

\(\Rightarrow\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)

\(99\overline{ab}\text{⋮}99\)\(\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)

nên \(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\) (đpcm)

Điều ngược lại:

\(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\)

\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)

\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)

\(\Rightarrow\overline{abcd}\text{⋮}99\) (đpcm)

11 tháng 12 2016

Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath

19 tháng 7 2018

abcd \(⋮\) 101

<=> abcd = 101k (k 10 ; k \(\in\)N)

<=> ab = cd

=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)

* Chú thích (ko ghi vào)

\(⋮\) là dấu chia hết

đcpm là điều phải chứng minh

19 tháng 7 2018

mong moi nguoi giup do minh dang can gap

2 tháng 10 2015

Bài 1:

Ta có: abcd=100ab+cd=99ab+(ab+cd)

Vì 99 chia hết cho 99 =)ab chia hết cho 99=>(ab+cd) chia hết cho 99

 Hay abcd chia hết cho 99;(ab+cd) chia hết cho 99

Vậy nếu abcd chia hết cho 99 thì (ab+cd) chia hết cho 99 và ngược lại

19 tháng 7 2015

1.

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

2.

abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7

 

8 tháng 3 2016

chet minh ko bit tra loi

21 tháng 2 2016

a-2:3 => a-2+3:3 =>a+1:3

a-4:4 => a-4+5:5 => a+1:5

a-6:7 => a-6+7:7 => a+1:7

Vậy a+1 là bọi của 3,5,7

a nhỏ nhất nên a+1 nhỏ nhất

a+1 là BCNN(3;5;7)=105

a=104

2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4

Ta có cd chia hết cho 4 nên abcd chia hết cho 4

Câu b tương tự

30 tháng 9 2015

a, Theo bài ra, ta có:

ab = 2cd                           (1)

abcd = ab.100 + cd.1        (2)

 Thay (1) vào (2), ta có

abcd = cd.2.100 + cd.1

         = cd.200 + cd.1

         = cd.(200 + 1)

         = cd.201

Vì 201 chia hết cho 67 nên cd.201 chia hết cho 67 hay abcd chia hết cho 67 (đpcm)

b, Vì ab + cd + eg chia hết cho 11 nên abcdeg chia hết cho 11.          (1)

Theo bài ra, ta có:

abcdeg = ab.10000 + cd.100 + eg.1

Từ (1), ta có ab.10000 + cd.100 + eg.1 chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)

c,Tương tự như phần b bạn nhé

Nếu đúng thì bạn tick cho mình nha

 

29 tháng 5 2017

dpcm la gi

4 tháng 11 2015

kho qua thu a bai tâp nha thây ban a