Tìm a ,b là các số nguyên dương sao cho a(ab+1) chia hết a^2+b và b(ab+1) chia hết b^2-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


gọi a^2+b^2/ab là A
Ta có A=a^2+b^2/ab=a^2/ab+b^2/ab=a/b+b/a
=>a/b+b/a=a^2+b^2/ab=(a^2+b^2-2ab)/(ab) (+2) (áp dụng hằng đẳng thức ta có)=(a-b)^2/(ab) (+2)
vậy ta thấy (a-b)^2=0 với moij số a và b => (a+b)^2/(ab) (+2) luôn lớn hơn hoặc bangwf 2
Vậy a -b = 0 thì a=b
Vì a^2-b^2 chia hết ab -> a,b là ước chung (a^2-b^2)->a=b
A=0+2=2
Vậy A bằng 2(nếu sai thì xl mọi ng nha)

Giả sử \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.
Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)
TH1: Nếu trong a và b có một số chẵn, một số lẻ:
Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)
\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)
Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)
\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.
Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.
Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.
TH2: Nếu cả a và b đều lẻ
\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.
Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1)
Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)
Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.
Vậy k luôn bằng 5 và nó là số nguyên tố.

a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

Do: \(\left(a+1\right)⋮b\Rightarrow a+1=kb\)
=> \(a=kb-1\)
=> \(\left(b+2\right)⋮kb-1\)
Do: \(b+2;kb-1>0\Rightarrow b+2\ge kb-1\Rightarrow b+3\ge kb\) (1)
NẾU: \(k\ge5\Rightarrow kb\ge5b=b+4b\ge b+4>b+3\) (2)
TỪ (1) VÀ (2) => LOẠI.
=> Nếu \(k=4\Rightarrow b+3\ge4b\Rightarrow1\ge b\Rightarrow b=1\) (DO \(b\ge1\left(b\inℕ^∗\right)\))
=> \(3⋮a\Rightarrow a=\left\{1;3\right\}\)
=> \(\hept{\begin{cases}a=1;b=1\\a=3;b=1\end{cases}}\)
NẾU k = 3 \(\Rightarrow b+3\ge3b\Rightarrow3\ge2b\Rightarrow b=1\)và kết quả giống tương tự TH1 k = 4
BẠN XÉT NỐT 2 TRƯỜNG HỢP k=1; k=2 nhaaaaaa

b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé
bạn search đáp án đề hsg 9 tỉnh Nghệ An 2021-2022 nha
ok