A = 3 + 4 + 6 + 9 + 13 + 18 + ... + 4953
Tính A theo an + 1 = an + n , n\(\varepsilon\)N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
a)
n = 20 tức n chẵn.
Khi n chẵn: \(A=-4.\dfrac{n}{2}=-4.\dfrac{20}{2}=-40\)
b)
Khi n chẵn:
\(A=-4.\dfrac{n}{2}=-2n\)
Khi n lẽ:
\(A=1+\dfrac{4\left(n-1\right)}{2}=1+2\left(n-1\right)=1+2n-2=2n-1\)
a) Số hạng thứ 20 (n=20) là
\(\left(20-1\right).4=76\)
\(A=1-5+9-13+17-21+...+76\)
\(A=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(A=\left(-4\right).38=-152\)
b) Số hạng thứ n là:
\(\left(n-1\right).4\)
\(\)\(A=1-5+9-13+17-21+...+\left(n-1\right).4\)
\(A=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\) ((n-1).2 số -4)
\(A=\left(-4\right).\left(n-1\right).2=-8\left(n-1\right)\)
chuyên cac danh tu sau sang so nhieu
1.an egg -> eggs
2.a car -> cars
3.a car -> cars 10.a tomato -> tomatoes
4.an orange -> oranges 11.a leaf -> leaves
5.a house -> houses 12.a wife -> wives
6.a student -> students 13.a country -> countries
7.a class -> classes 14.a policeman -> policemen
8.a box -> boxes 15.a bamboo -> bamboos
9.a watch -> watches 16.an goose -> geese
chuyên cac danh tu sau sang so nhieu
1.an egg ->.....eggs.........
2.a car ->........cars........
3.a car ->............... 10.a tomato ->....tomatoes............
4.an orange ->.......oranges..... 11.a leaf ->.........leave......
5.a house ->.........houses....... 12.a wife ->....wives............
6.a student ->.........students........... 13.a country ->.....countries........
7.a class ->.........classes......... 14.a policeman ->.......policemen....
8.a box ->........boxes........ 15.a bamboo ->..........bamboo........
9.a watch ->.....watches....... 16.an goose ->.........geese..........
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
2, 100^2+200^2+300^2+..+1000^2
=100^2+2^2×100^2+3^2×100^2+...+100^2×10^2
=100^2×( 1^2+2^2+3^2+..+10^2)
=100^2×385
= 3850000
Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!