Tìm số nguyên dương k sao cho \(\frac{k^2}{1,001^k}\)đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Vì mẫu số lũy thừa k của cơ số lớn hơn 1000 tăng nhanh hơn tử số với lũy thừa 2 (luôn dương) của k khi k tăng.
Vì k là số nguyên (âm, dương và số 0), nên khi số nguyên k nhỏ nhất, thì phân số trên đạt giá trị lớn nhất. Tức là k= \(-\infty\)


Bạn tham khảo tại đây:
Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath

Để giải bài toán này, ta sẽ phân tích và thử tìm giá trị của \(k\) sao cho biểu thức
\(p = \frac{x^{k} y}{x^{2} + y^{2}}\)
là một số nguyên tố, trong đó \(x\), \(y\), và \(k\) là các số nguyên dương.
Bước 1: Đặc điểm của \(p\)
- \(p\) phải là một số nguyên tố, vì vậy \(\frac{x^{k} y}{x^{2} + y^{2}}\) phải là một số nguyên và đồng thời là một số nguyên tố.
Bước 2: Tìm giá trị của \(k\)
Để \(p\) là một số nguyên, điều kiện cần thiết là mẫu số \(x^{2} + y^{2}\) phải chia hết cho tử số \(x^{k} y\). Tuy nhiên, việc \(x^{2} + y^{2}\) chia hết cho \(x^{k} y\) sẽ phụ thuộc vào mối quan hệ giữa \(x\), \(y\), và \(k\).
Bước 3: Thử với các giá trị nhỏ của \(x\) và \(y\)
Ta sẽ thử với một số giá trị nhỏ của \(x\), \(y\), và kiểm tra các giá trị của \(k\) sao cho biểu thức là một số nguyên tố.
Thử với \(x = 1\) và \(y = 1\):
Khi \(x = 1\) và \(y = 1\), ta có:
\(p = \frac{1^{k} \cdot 1}{1^{2} + 1^{2}} = \frac{1}{2}\)
Biểu thức này không phải là một số nguyên, vì vậy \(x = 1\) và \(y = 1\) không phù hợp.
Thử với \(x = 2\) và \(y = 1\):
Khi \(x = 2\) và \(y = 1\), ta có:
\(p = \frac{2^{k} \cdot 1}{2^{2} + 1^{2}} = \frac{2^{k}}{5}\)
Để \(p\) là số nguyên, \(2^{k}\) phải chia hết cho 5. Tuy nhiên, không có số nguyên \(k\) nào sao cho \(2^{k}\) chia hết cho 5, vì vậy không có giá trị \(k\) thỏa mãn điều kiện này.
Thử với \(x = 2\) và \(y = 3\):
Khi \(x = 2\) và \(y = 3\), ta có:
\(p = \frac{2^{k} \cdot 3}{2^{2} + 3^{2}} = \frac{2^{k} \cdot 3}{13}\)
Để \(p\) là số nguyên, \(2^{k} \cdot 3\) phải chia hết cho 13. Điều này chỉ xảy ra khi \(k = 3\), vì \(2^{3} \cdot 3 = 24\), và \(24 \div 13\) cho ra một số nguyên.
Bước 4: Kiểm tra giá trị \(k = 3\)
Khi \(k = 3\), ta có:
\(p = \frac{2^{3} \cdot 3}{2^{2} + 3^{2}} = \frac{24}{13} = 1\)
Do đó, \(p = 1\), không phải là một số nguyên tố. Vậy, không có giá trị nào thích hợp.

Với \(k\ge19\)
Xét : \(\frac{20^k+18^k}{k!}-\frac{20^{k+1}+18^{k+1}}{\left(k+1\right)!}=\frac{20^k}{k!}\left(1-\frac{20}{k+1}\right)+\frac{18^k}{k!}\left(1-\frac{18}{k+1}\right)\)
\(\ge\frac{18^k}{k!}\left(2-\frac{38}{k+1}\right)>0\)
=> \(\frac{20^k+18^k}{k!}>\frac{20^{k+1}+18^{k+1}}{\left(k+1\right)!}\)với k >= 19
=> \(\frac{20^{19}+18^{19}}{19!}>\frac{20^{20}+18^{20}}{20!}>\frac{20^{21}+18^{21}}{21!}>...\)(1)
Với \(k\le19\)
\(\frac{20^k+18^k}{k!}-\frac{20^{k-1}+18^{k-1}}{\left(k-1\right)!}=\frac{20^{k-1}}{\left(k-1\right)!}\left(\frac{20}{k-1}-1\right)+\frac{18^{k-1}}{\left(k-1\right)!}\left(\frac{18}{k-1}-1\right)\)
\(>\frac{18^{k-1}}{\left(k-1\right)!}\left(\frac{38}{\left(k-1\right)}-2\right)>0\)
=> \(\frac{20^k+18^k}{k!}>\frac{20^{k-1}+18^{k-1}}{\left(k-1\right)!}\) với k <= 19
=> \(\frac{20^{19}+18^{19}}{19!}>\frac{20^{18}+18^{18}}{18!}>...>\frac{20^1+18^1}{1!}\)(2)
Từ (1); (2) => k = 19 thì \(\frac{20^k+18^k}{k!}\) có giá trị lớn nhất.

#include <bits/stdc++.h>
using namespace std;
long long a[1000006];
long long n;
int main()
{
for(int i=1;i<=1000006;i++){
a[i]=i*i;
}
cin>>n;
for(int i=1;i<=n;i++){
if(a[i]%n==0){cout<<a[i]/n;break;}
}
return 0;
}