Cho x, y, z > 0 thỏa mãn: xy + yz + zx = 1. Tìm GTNN của P = x2 + y2 + 2z2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)
Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)
Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.

nhờ mn giúp mk bài này vs ạ
mk đang cần gấp !
cảm ơn mn nhiều
Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)
\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)
Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)
Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)
\(\Rightarrow3\ge a^5+b^6+b^5\)
BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\)
Ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)
Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)
Từ (1);(2) \(\Rightarrow\) đpcm

Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Áp dụng BĐT Cosi ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\left(1\right)\)
Tương tự ta cũng có: \(\frac{yz}{x}+\frac{xz}{y}\ge2z\left(2\right);\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng (1),(2),(3) vế theo vế ta được;
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)\ge2\left(x+y+z\right)=2.2019=4038\)
\(\Rightarrow2P\ge4038\)
\(\Rightarrow P\ge2019\)
Dấu "=" xảy ra khi x = y = z = 673
Vậy Pmin = 2019 khi x = y = z = 673


Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:
\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=
\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)
\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)
Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)