K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 1 2024

Lời giải:

Gọi $d=ƯCLN(x+2022, x+2015)$

$\Rightarrow (x+2022)-(x+2015)\vdots d$

$\Rightarrow 7\vdots d$

$\Rightarrow d=1$ hoặc $d=7$

Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau

$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau 

$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:

$x+2015=1, (x+2022)^2=64$

$\Rightarrow x=-2014$ (tm)

Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.

Khi đó: $(7a)^2=64(7b)^3$

$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)

Vậy.......

24 tháng 12 2016

\(x^{2015}-\left(-42-2x\right)=6+x^{2015}\)

\(\Rightarrow-\left(-42-2x\right)=6\)

\(\Rightarrow42+2x=6\)

\(\Rightarrow2x=-36\)

\(\Rightarrow x=-18\)

Vậy \(x=-18\)

 

10 tháng 12 2023

= 4041.

30 tháng 12 2015

tick mk nha các bn ơi

30 tháng 12 2015

xạo vừa vừa thôi mấy mắm ơi, chtt đâu có đâu

3 giờ trước (15:19)

O biết






2 giờ trước (16:07)

Sửa đề: \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|\)

Ta có: \(\left(x-2\right)^2+2\ge2\forall x\)

=>\(\frac{6}{\left(x-2\right)^2+2}\le\frac62=3\forall x\)

\(\left|y-2022\right|+\left|y-2025\right|=\left|y-2022\right|+\left|2025-y\right|\ge\left|y-2022+2025-y\right|=3\forall y\)

\(\frac{6}{\left(x-2\right)_{}^2+2}=\left|y-2022\right|+\left|y-2025\right|\)

nên \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|=3\)

=>\(\begin{cases}\left(x-2\right)^2+2=\frac63=2\\ \left(y-2022\right)\left(y-2025\right)\le0\end{cases}\Rightarrow\begin{cases}x-2=0\\ 2022\le y\le2025\end{cases}\)

=>\(\begin{cases}x=2\\ y\in\left\lbrace2022;2023;2024;2025\right\rbrace\end{cases}\)