K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Nhìn vào phân thức

Ta dễ dàng thấy được phân thức trên chưa tối giản.

OK?

17 tháng 8 2017

\(Q=\frac{x^7+x^2+1}{x^8+x+1}=\frac{\left(x^7-x^4\right)+\left(x^4-x\right)+\left(x^2+x+1\right)}{\left(x^8-x^5\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)}\)

\(=\frac{x^4\left(x^3-1\right)+x\left(x^3-1\right)+\left(x^2+x+1\right)}{x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}\)

\(=\frac{x^4\left(x-1\right)\left(x^2+x+1\right)+x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)}\)

\(=\frac{\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)}{\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)}\)

\(=\frac{x^5-x^4+x^2-x+1}{x^6-x^5+x^3-x^2+1}\)

Ta thấy Q vẫn còn rút gọn được thành \(\frac{x^5-x^4+x^2-x+1}{x^6-x^5+x^3-x^2+1}\) nên Q chưa tối giản (đpcm)

18 tháng 8 2017

\(\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)

\(=\dfrac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+2\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\) (đpcm)

Dấu "=" xảy ra khi x = 1

18 tháng 8 2017

Bn kia giải bài 1 r nên mk giải bài 2 nha!

Sửa lại:\(\dfrac{x^7+x^2+1}{x^8+x+1}\)

\(\dfrac{x^7+x^2+1}{x^8+x+1}=\dfrac{x^7-x+x^2+x+1}{x^8-x^2+x^2+x+1}\)

\(=\dfrac{x\left(x^6-1\right)+x^2+x+1}{x^2\left(x^6-1\right)+x^2+x+1}\)

\(=\dfrac{x\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}\)

\(=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}\)

\(=\dfrac{\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)}{\left(x^2+x+1\right)(x^6-x^5+x^3-x^2+1)}\)

Cả tử và mẫu đều có nhân tử:\(x^2+x+1>1\Rightarrowđpcm\)

5 tháng 11 2018

Ta có :

 \(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)

\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Mặt khác :

\(n^7+n^2+1=n^7-n+n^2+n+1\)

\(=(n-1)(n^6-1)+n^2+n+1\)

\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản

Hok tốt :>

6 tháng 12 2016

:: là dấu chia hết.

a) và b)

Gọi \(\left(x;2x+1\right),\left(x;4x^2\right)\)là \(d,e\).Ta có :

\(\hept{\begin{cases}x::d\Rightarrow2x::d\left(x::e\Rightarrow4x^2::e\right)\\2x+1::d\left(4x^2+1::e\right)\end{cases}}\Rightarrow2x+1-2x::d\left(4x^2+1-4x^2::e\right)\Rightarrow1::d\left(1::e\right)\Rightarrow d=e=1\)

Vậy phân thức tối giản

c)Chứng minh tương tự

AH
Akai Haruma
Giáo viên
24 tháng 3 2022

Lời giải:

Ta có:

\(P=\frac{\sqrt{x}(\sqrt{x^3}-8)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}\)

\(=\frac{\sqrt{x}(\sqrt{x}-2)(x+2\sqrt{x}+4)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\sqrt{x}(\sqrt{x}-2)-(\sqrt{x}+1)+2(\sqrt{x}+2)\)

\(=x-2\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+4=x-\sqrt{x}+3\)

$=(\sqrt{x}-\frac{1}{2})^2+\frac{11}{4}\geq \frac{11}{4}$ với mọi $x>0; x\neq 4$

$\Rightarrow \frac{a}{b}=\frac{11}{4}$

Vì $a,b$ nguyên dương và $\frac{a}{b}$ tối giản nên $a=11; b=4$

$\Rightarrow a+b=11+4=15$

 

18 tháng 9 2018

\(\frac{x+1}{x-1}=\frac{7}{3}\)

=> \(3.\left(x+1\right)=7.\left(x-1\right)\)

=> \(3x+3=7x-7\)

=> \(3x+10=7x\)

=> \(4x=10\)

=> \(x=\frac{10}{4}=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

18 tháng 9 2018

\(\frac{x+1}{x-1}=\frac{7}{3}\)

\(\Rightarrow3\left(x+1\right)=7\left(x-1\right)\)

\(\Leftrightarrow3x+3=7x-7\)

\(\Leftrightarrow-4x=-10\)

\(\Leftrightarrow x=\frac{5}{2}\)

~~~!!!

11 tháng 8 2018

Tk cho mk đi!

11 tháng 8 2018

mk trả lời nhanh nhất mà