Cho A= 1/4+1/4^2+1/4^3+...+1/4^99. Chứng tỏ rằng A<1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này:))

\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B

Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98
=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)
=>2.A=1-1/3^99
=>A=1/2 -1/3^99.1/2 <1/2
Vậy ... T I C K cho mình với nha

\(A=1+4+4^2+4^3+...+4^{99}\)
\(4A=4+4^2+4^3+4^4+...+4^{100}\)
\(4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3...+4^{99}\right)\)
\(3A=4^{100}-1\)
\(A=\frac{4^{100}}{3}-\frac{1}{3}=\frac{B}{3}-\frac{1}{3}\)
Vậy \(A< \frac{B}{3}\)
A=1+4+42+...+499
4A=4+42+43+...+4100
4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)
3A=4100-1
Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)

\(=>4A=4+4^2+...+4^{99}+4^{100}\)
\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(=>3A=4^{100}-1\)
\(=>A=\frac{4^{100}-1}{3}\)
\(\frac{1}{3}B=\frac{4^{100}}{3}\)
=> A<\(\frac{1}{3}B\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
4A = 4 + 42 + 43 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
=> \(A=\frac{4^{100}-1}{3}\)
B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)
A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹
⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸
⇒ 3A = 4A - A
= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)
= 1 - 1/4⁹⁹
⇒ A = (1 - 1/4⁹⁹)/3
Do 1 - 1/4⁹⁹ < 1
⇒ (1 - 1/4⁹⁹)/3 < 1/3
Vậy A < 1/3