c/m 1+(tan^2) = 1/ (cos^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giả sử các biểu thức đều xác định:
a/ \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
\(=sin^2x.\frac{sinx}{cosx}+sinx.cosx+cos^2x.\frac{cosx}{sinx}+sinx.cosx\)
\(=sinx\left(\frac{sin^2x}{cosx}+cosx\right)+cosx\left(\frac{cos^2x}{sinx}+sinx\right)\)
\(=sinx\left(\frac{sin^2x+cos^2x}{cosx}\right)+cosx\left(\frac{cos^2x+sin^2x}{sinx}\right)=\frac{sinx}{cosx}+\frac{cosx}{sinx}=tanx+cotx\)
b/
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+tan^2x=1+tan^2x+tan^2x=1+2tan^2x\)
c/ \(\frac{cosx}{1+sinx}+tanx=\frac{cosx\left(1-sinx\right)}{1-sin^2x}+\frac{sinx.cosx}{cos^2x}=\frac{cosx-cosx.sinx}{cos^2x}+\frac{sinx.cosx}{cos^2x}\)
\(=\frac{cosx}{cos^2x}=\frac{1}{cosx}\)
d/ \(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}+\frac{sinx\left(1+cosx\right)}{sin^2x}\)
\(=\frac{sinx-sinx.cosx}{1-cos^2x}+\frac{sinx+sinx.cosx}{sin^2x}=\frac{sinx-sinx.cosx}{sin^2x}+\frac{sinx+sinx.cosx}{sin^2x}\)
\(=\frac{2sinx}{sin^2x}=\frac{2}{sinx}\)

a) ta có : \(A=tan1.tan2.tan3...tan89\)
\(=\left(tan1.tan89\right).\left(tan2.tan88\right).\left(tan3.tan87\right)...\left(tan44.tan46\right).tan45\)
\(=\left(tan1.tan\left(90-1\right)\right).\left(tan2.tan\left(90-2\right)\right).\left(tan3.tan\left(90-3\right)\right)...\left(tan44.tan\left(90-44\right)\right).tan45\)
\(=\left(tan1.cot1\right).\left(tan2.cot2\right).\left(tan3.cot3\right)...\left(tan44.cot44\right).tan45\) \(=tan45=1\)b) ta có \(B=\dfrac{sin\alpha+2cos\alpha}{3sin\alpha-4cos\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}\)
\(=\dfrac{tan\alpha+2}{3tan\alpha-4}=\dfrac{\dfrac{1}{2}+2}{\dfrac{3}{2}-4}=-1\)
ta có \(D=\dfrac{2sin^2\alpha-3cos^2\alpha}{4cos^2\alpha-5sin^2\alpha}=\dfrac{\dfrac{2sin^2\alpha}{cos^2\alpha}-\dfrac{3cos^2\alpha}{cos^2\alpha}}{\dfrac{4cos^2\alpha}{cos^2\alpha}-\dfrac{5sin^2\alpha}{cos^2\alpha}}\)
\(=\dfrac{2tan^2\alpha-3}{4-5tan^2\alpha}=\dfrac{2\left(\dfrac{1}{2}\right)^2-3}{4-5\left(\dfrac{1}{2}\right)^2}=\dfrac{-10}{11}\)

\(A=cos^21+coss^22+...+cos^288+cos^289-\frac{1}{2}\)
\(A=1-sin^21+1-sin^22+...+1-sin^244+cos^245+cos^246+...+cos^289-\frac{1}{2}\)
\(A=1\cdot44+cos^245-\frac{1}{2}\)
\(A=44\)
B=\(sin^21+sin^22+...+sin^289-\frac{1}{2}\)
\(B=1-cos^21+1-cos^22+...+sin^245+sin^246+....+sin^289-\frac{1}{2}\)
\(B=1\cdot44+sin^245-\frac{1}{2}=44\)
\(C=tan^21\cdot tan^22\cdot...\cdot tan^288+tan^289\)
\(C=tan^21\cdot\left(tan^22\cdot tan^288\right)\cdot...\cdot\left(tan^244\cdot tan^246\right)\cdot tan^245+tan^289\)
\(C=tan^21+tan^289\approx3282\)
D = \(\left(tan^21:cot^289\right)+...+\left(tan^244:tan^246\right)+tan^245\)
\(D=\left(tan^21\cdot tan^289\right)+...+\left(tan^244\cdot tan^246\right)+tan^245\)
\(D=1+...+1+1\)
ta thấy từ 1 đến 89 có 89 số hạng, trong đó có 44 cặp.
vậy D = 45

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} xsin4x+cos4x=sin4x+cos4x+2sin2xcos2x−2sin2xcos2x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}=(sin2x+cos2x)2−2sin2xcos2x=1−2sin2xcos2x
b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}1−cotx1+cotx=1−tanx11+tanx1=tanxtanx−1tanxtanx+1=tanx−1tanx+1
c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)cos3xcosx+sinx=cos2x1+cos3xsinx=tan2x+1+tanx(tan2x+1)
=\tan ^{3} x+\tan ^{2} x+\tan x+1=tan3x+tan2x+tanx+1

a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

a: \(\left(1-cosx\right)\left(1+cosx\right)=1^2-cos^2x=sin^2x\)
b: \(tan^2x\left(2cos^2x+sin^2x-1\right)\)
\(=tan^2x\left(1-1+cos^2x\right)\)
\(=\dfrac{sin^2x}{cos^2x}\cdot cos^2x=sin^2x\)
c: \(sin^4x+cos^4x+2\cdot cos^2x\cdot sin^2x\)
\(=\left(sin^2x+cos^2x\right)^2\)
\(=1^2=1\)

Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)

a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)
b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)
c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)
d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)
= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)
= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)
g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)
h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)
= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)
= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)
= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)