Cho P là số nguyên tố lớn hơn 3.CMR 2017 - p^2 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
Vì p là số nguyên tố lớn hơn a nên p là số lẻ
\(\Rightarrow\) ( p + 2015 ).( p + 2017 )\(⋮\)8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 ( k thuộc N* )
+) Với p = 3k + 1
\(\Rightarrow\) ( p + 2015 ).( p + 2017 ) = ( 3k + 2016 ).( 3k + 2018 ) \(⋮\)3 ( vì 3k\(⋮\)3; 2016\(⋮\)3 ở số đầu tiên ) (2)
+) Với p = 3k + 2
\(\Rightarrow\) ( p + 2015).(p + 2017 ) = ( 3k + 2017 ).( 3k + 2019 )\(⋮\)3 ( Vì 3k\(⋮\)3; \(2019⋮3\)nên số thứ 2 \(⋮3\)) (3)
Từ (1);(2) và (3) suy ra ( p + 2015).( p + 2017 )\(⋮\)24
\(\Rightarrowđpcm\)


Đặt \(A=p^2-1\)
p là số nguyên tố lớn hơn 3 nên p là số lẻ và p không chia hết cho 3
Vì p là số lẻ nên p=2x+1
\(A=p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(2x+1-1\right)\left(2x+1+1\right)=2x\left(2x+2\right)=4x\left(x+1\right)\)
Vì x;x+1 là hai số tự nhiên liên tiếp
nên x(x+1)⋮2
=>4x(x+1)⋮4*2
=>A⋮8(1)
Vì p là số không chia hết cho 3 nên p=3k+1 hoặc p=3k+2
TH1: p=3k+1
A=(p-1)(p+1)
=(3k+1-1)(3k+1+1)
\(=3k\left(3k+2\right)\) ⋮3(2)
TH2: p=3k+2
A=(p-1)(p+1)
=(3k+2-1)(3k+2+1)
=(3k+1)(3k+3)
=3(k+1)(3k+1)⋮3(3)
Từ (2),(3) suy ra A⋮3
mà A⋮8
và ƯCLN(3;8)=1
nên A⋮3*8
=>A⋮24



Vì p nguyên tố > 3
=> p \(̸⋮\)3
=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 \(⋮3\)
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 \(⋮\)8
Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24