chứng Minh 10n-36n 1 chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9. Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3. |
Ta có: J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n => J chia hết cho 9. +) Chứng minh 11...1 + 2 n ⋮ 3 . Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n . Suy ra 11...1 và n có cùng số dư trong phép chia cho 3. => 11...1-n chia hết cho 3. => (11...1+2n) ⋮ 3
⇒
J
⋮
27
|


a:Sửa đề: \(10^{n}+18n-1\) chia hết cho 27
Đặt \(A=10^{n}+18n-1\)
\(=\left(10^{n}-1\right)+18n=99\ldots9+18n\) (n chữ số 9)
=9(11...1+2n)⋮9
11..1+2n=n+2n=3n⋮3
=>A⋮9*3
=>A⋮27
b: Sửa đề: \(10^{n}+72n-1\)
Đặt \(B=10^{n}+72n-1\)
\(=\left(10^{n}-1\right)+72n\)
=99...9+72n(n chữ 9)
=9(11...1+8n)
11...1+8n=n+8n=9n⋮9
=>B⋮9*9
=>B⋮81

Số chia hết cho 27 có tổng các chữ số chia hết cho 27
Ta có :
\(10^n-36n-1=10^n-1-36n=99...9-36n\) (n chữu số 9)
= 9 . (11...1 - 4n) (n chữ số 1)
Xét 11...1 - 4n = 11...1 - n - 3n
; Mà 11...1 (n chữ số 1) có tổng các chữ số là n
=> 11...1 - n chia hết cho 3
=> 11...1 - n - 3n chia hết cho 3
=> 9.(11...1 - n - 3n) = 9.(11...1 - 4n) chia hết cho 27
hay 10n - 36n - 1 chia hết cho 27

b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
